Lorentz invariants of pure three-qubit states

被引:0
|
作者
Devi, A. R. Usha [1 ,2 ]
Sudha, H. Akshata [2 ,3 ,4 ]
Shenoy, H. Akshata [4 ]
Karthik, H. S. [4 ]
Karthik, B. N. [1 ]
机构
[1] Bangalore Univ, Dept Phys, Bangalore 560056, India
[2] Inspire Inst Inc, Alexandria, VA 22303 USA
[3] Kuvempu Univ, Dept Phys, Shankaraghatta 577451, Karnataka, India
[4] Univ Gdansk, Int Ctr Theory Quantum Technol, Gdansk, Poland
关键词
Three-qubit pure states; SL(2; C) canonical form; Lorentz invariants; Geometric picture; LOCAL INVARIANTS; ENTANGLEMENT; OPERATIONS;
D O I
10.1007/s11128-024-04454-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Extending the mathematical framework of Sudha et al. (Phys Rev A 102:052419, 2020), we construct Lorentz invariant quantities of pure three-qubit states. This method serves as a bridge between the well-known local unitary (LU) invariants of an arbitrary three-qubit pure state and the Lorentz invariants of its reduced two-qubit systems.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Quantum circuit for three-qubit random states
    Giraud, Olivier
    Znidaric, Marko
    Georgeot, Bertrand
    [J]. PHYSICAL REVIEW A, 2009, 80 (04):
  • [32] Correlations Existing in Three-Qubit Product States
    Sun Chun-Xiao
    Shi Ming-Jun
    Du Jiang-Feng
    [J]. CHINESE PHYSICS LETTERS, 2010, 27 (04)
  • [33] The Three Coefficient Matrices can Completely Determine Six Algebraically Independent Local Invariants of Three-qubit States
    Yi Hu
    Junling Che
    [J]. International Journal of Theoretical Physics, 2020, 59 : 604 - 610
  • [34] One sided sequential sharing of tripartite nonlocality for pure and mixed three-qubit states
    Hossain, Sk Sahadat
    [J]. INDIAN JOURNAL OF PHYSICS, 2024,
  • [35] Entanglement dynamics in three-qubit X states
    Weinstein, Yaakov S.
    [J]. PHYSICAL REVIEW A, 2010, 82 (03):
  • [36] Control and measurement of three-qubit entangled states
    Roos, CF
    Riebe, M
    Häffner, H
    Hänsel, W
    Benhelm, J
    Lancaster, GPT
    Becher, C
    Schmidt-Kaler, F
    Blatt, R
    [J]. SCIENCE, 2004, 304 (5676) : 1478 - 1480
  • [37] Remote preparation of a class of three-qubit states
    Wang, Dong
    Liu, Yi-min
    Zhang, Zhan-jun
    [J]. OPTICS COMMUNICATIONS, 2008, 281 (04) : 871 - 875
  • [38] The Three Coefficient Matrices can Completely Determine Six Algebraically Independent Local Invariants of Three-qubit States
    Hu, Yi
    Che, Junling
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (02) : 604 - 610
  • [39] Separability criteria for mixed three-qubit states
    Szalay, Szilard
    [J]. PHYSICAL REVIEW A, 2011, 83 (06):
  • [40] Disentanglement of three-qubit states in a noisy environment
    Huang, Jie-Hui
    Wang, Li-Gang
    Zhu, Shi-Yao
    [J]. PHYSICAL REVIEW A, 2010, 81 (06):