Arboreal Galois groups for quadratic rational functions with colliding critical points

被引:1
|
作者
Benedetto, Robert L. [1 ]
Dietrich, Anna [2 ]
机构
[1] Amherst Coll, Amherst, MA 01002 USA
[2] Brown Univ, Providence, RI 02912 USA
关键词
37P05; 11R32; 14G25;
D O I
10.1007/s00209-024-03566-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a field, and let f is an element of K(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in K(z)$$\end{document} be rational function. The preimages of a point x0 is an element of P1(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0\in \mathbb {P}<^>1(K)$$\end{document} under iterates of f have a natural tree structure. As a result, the Galois group of the resulting field extension of K naturally embeds into the automorphism group of this tree. In unpublished work from 2013, Pink described a certain proper subgroup M & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{\ell }$$\end{document} that this so-called arboreal Galois group G infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\infty }$$\end{document} must lie in if f is quadratic and its two critical points collide at the & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-th iteration. After presenting a new description of M & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{\ell }$$\end{document} and a new proof of Pink's theorem, we state and prove necessary and sufficient conditions for G infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\infty }$$\end{document} to be the full group M & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{\ell }$$\end{document}.
引用
收藏
页数:33
相关论文
共 50 条
  • [41] THE MONODROMY GROUPS OF CRITICAL-POINTS OF FUNCTIONS .2.
    CHMUTOV, SV
    INVENTIONES MATHEMATICAE, 1983, 73 (03) : 491 - 510
  • [42] Belyi functions, hypermaps and Galois groups
    Jones, G
    Singerman, D
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1996, 28 : 561 - 590
  • [43] RATIONAL APPROXIMATIONS OF SOME FUNCTIONS AT RATIONAL POINTS
    DANILOV, LV
    MATHEMATICAL NOTES, 1978, 24 (3-4) : 741 - 746
  • [44] Groups of rational functions
    McLean, K. Robin
    MATHEMATICAL GAZETTE, 2007, 91 (521): : 208 - 215
  • [45] Saddle points of rational functions
    Guangming Zhou
    Qin Wang
    Wenjie Zhao
    Computational Optimization and Applications, 2020, 75 : 817 - 832
  • [46] Galois groups and prime divisors in random quadratic sequences
    Doyle, John R.
    Healey, Vivian Olsiewski
    Hindes, Wade
    Jones, Rafe
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2024, 176 (01) : 95 - 122
  • [47] Saddle points of rational functions
    Zhou, Guangming
    Wang, Qin
    Zhao, Wenjie
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2020, 75 (03) : 817 - 832
  • [48] Functions discontinuous at rational points
    Bupchnall, JL
    Chaundy, TW
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1926, 24 : 150 - 157
  • [49] Iterated monodromy groups of rational functions and periodic points over finite fields
    Bridy, Andrew
    Jones, Rafe
    Kelsey, Gregory
    Lodge, Russell
    MATHEMATISCHE ANNALEN, 2024, 390 (01) : 439 - 475
  • [50] Rational approximation to real points on quadratic hypersurfaces
    Poels, Anthony
    Roy, Damien
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2021, 103 (02): : 672 - 696