Arboreal Galois groups for quadratic rational functions with colliding critical points

被引:1
|
作者
Benedetto, Robert L. [1 ]
Dietrich, Anna [2 ]
机构
[1] Amherst Coll, Amherst, MA 01002 USA
[2] Brown Univ, Providence, RI 02912 USA
关键词
37P05; 11R32; 14G25;
D O I
10.1007/s00209-024-03566-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a field, and let f is an element of K(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in K(z)$$\end{document} be rational function. The preimages of a point x0 is an element of P1(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0\in \mathbb {P}<^>1(K)$$\end{document} under iterates of f have a natural tree structure. As a result, the Galois group of the resulting field extension of K naturally embeds into the automorphism group of this tree. In unpublished work from 2013, Pink described a certain proper subgroup M & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{\ell }$$\end{document} that this so-called arboreal Galois group G infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\infty }$$\end{document} must lie in if f is quadratic and its two critical points collide at the & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-th iteration. After presenting a new description of M & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{\ell }$$\end{document} and a new proof of Pink's theorem, we state and prove necessary and sufficient conditions for G infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\infty }$$\end{document} to be the full group M & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{\ell }$$\end{document}.
引用
收藏
页数:33
相关论文
共 50 条