Efficient cryptanalysis of an encrypted database supporting data interoperability

被引:0
|
作者
Shi, Gongyu [1 ,2 ]
Wang, Geng [1 ,2 ]
Sun, Shi-Feng [1 ]
Gu, Dawu [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai 200240, Peoples R China
[2] State Key Lab Cryptol, POB 5159, Beijing 100878, Peoples R China
来源
VLDB JOURNAL | 2024年 / 33卷 / 05期
基金
中国国家自然科学基金;
关键词
Encrypted database; Cryptanalysis; Lattice reduction; ALGORITHMS; SEARCHES; QUERIES; SUBSET;
D O I
10.1007/s00778-024-00852-1
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In an encrypted database, all data items stored at the server are encrypted and some operations can be performed directly over ciphertexts. Most existing encrypted database schemes cannot support data interoperability, that is, it cannot handle complex queries which require the output of one operator as the input to another. Wong et al. presented the encrypted database SDB (SIGMOD'14), and it is the only scheme that achieves data interoperability to the best of our knowledge. Recently, Cao et al. revisited the security of SDB (PVLDB'21) and proposed a ciphertext-only attack named "co-prime" attack. Their attack has a high success rate (84.9-99.9% on real-world benchmarks) and works on several common operations in SDB, including addition, sum, equi-join and group-by. However, the attack is time-consuming when the plaintext space (denoted as M) is large, since the time complexity is O(M2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(M<^>2)$$\end{document}, or O(M) with the meet-in-the-middle strategy. Cao et al. 's experiments showed that the attack takes similar to 25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim \,25$$\end{document} minutes on a laptop when M=220\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=2<^>{20}$$\end{document}. And the expected time cost will be 15,261 years if M=248\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=2<^>{48}$$\end{document}, which is infeasible. In addition, the authors provided the countermeasures to prevent co-prime attack. Our main contribution in this paper is twofold. First, we propose an improved ciphertext-only attack based on lattice reduction against SDB with time complexity O(1). Our attack works on not only the previous four operations discussed by Cao et al., but also some aggregate operations, and its success rate is the same as that of co-prime attack. With the same parameters, our attack only takes similar to 40\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 40$$\end{document} s on a laptop, which is 37 x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} faster than co-prime attack. Besides, our attack works for large M up to 2920\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<^>{920}$$\end{document} while the time cost remains almost unchanged. Thus, our attack is much more efficient and powerful. Next, we analyze the countermeasures proposed by Cao et al. and present an efficient attack with the orthogonal lattice reduction method, which denies the security of Cao et al.'s modified scheme. The time complexity is O(logM)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\text {log}M)$$\end{document}, and the attack takes several minutes on a laptop. Furthermore, we validate our attacks on two real-world public datasets and make some discussions.
引用
下载
收藏
页码:1357 / 1375
页数:19
相关论文
共 50 条
  • [41] A method of bucket index over encrypted character data in database
    Zhang, Yong
    Li, Wei-xin
    Niu, Xia-mu
    2007 THIRD INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING, VOL 1, PROCEEDINGS, 2007, : 186 - +
  • [42] Secure cipher index over encrypted character data in database
    Zhang, Yong
    Li, Wei-Xin
    Niu, Xia-Mu
    PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2008, : 1111 - +
  • [43] Storage and query over encrypted character and numerical data in database
    Wang, ZF
    Wang, W
    Shi, BL
    FIFTH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY - PROCEEDINGS, 2005, : 77 - 81
  • [44] Efficient boolean SSE: A novel encrypted database (EDB) for biometric authentication
    Zhu, Xueling
    Fu, Shaojing
    Hu, Huaping
    Wu, Qing
    Liu, Bo
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (12) : 10317 - 10335
  • [45] Towards Efficient Verifiable Conjunctive Keyword Search for Large Encrypted Database
    Wang, Jianfeng
    Chen, Xiaofeng
    Sun, Shi-Feng
    Liu, Joseph K.
    Au, Man Ho
    Zhan, Zhi-Hui
    COMPUTER SECURITY (ESORICS 2018), PT II, 2018, 11099 : 83 - 100
  • [46] Secure Query Processing with Data Interoperability in a Cloud Database Environment
    Wong, Wai Kit
    Kao, Ben
    Cheung, David Wai Lok
    Li, Rongbin
    Yiu, Siu Ming
    SIGMOD'14: PROCEEDINGS OF THE 2014 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2014, : 1395 - 1406
  • [47] Secure auditing and deduplication for encrypted cloud data supporting ownership modification
    Bai, Jianli
    Yu, Jia
    Gao, Xiang
    SOFT COMPUTING, 2020, 24 (16) : 12197 - 12214
  • [48] Cryptanalysis and improvement of a reversible data-hiding scheme in encrypted images by redundant space transfer
    Xiang, Yanping
    Xiao, Di
    Zhang, Rui
    Liang, Jia
    Liu, Ran
    INFORMATION SCIENCES, 2021, 545 : 188 - 206
  • [49] Secure auditing and deduplication for encrypted cloud data supporting ownership modification
    Jianli Bai
    Jia Yu
    Xiang Gao
    Soft Computing, 2020, 24 : 12197 - 12214
  • [50] Secure and Efficient Adjacency Search Supporting Synonym Query on Encrypted Graph in the Cloud
    Wu, Bin
    Zhao, Zhiqiang
    Cui, Zongmin
    Mei, Zhuolin
    Wu, Zongda
    IEEE ACCESS, 2019, 7 : 133716 - 133724