Efficient cryptanalysis of an encrypted database supporting data interoperability

被引:0
|
作者
Shi, Gongyu [1 ,2 ]
Wang, Geng [1 ,2 ]
Sun, Shi-Feng [1 ]
Gu, Dawu [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai 200240, Peoples R China
[2] State Key Lab Cryptol, POB 5159, Beijing 100878, Peoples R China
来源
VLDB JOURNAL | 2024年 / 33卷 / 05期
基金
中国国家自然科学基金;
关键词
Encrypted database; Cryptanalysis; Lattice reduction; ALGORITHMS; SEARCHES; QUERIES; SUBSET;
D O I
10.1007/s00778-024-00852-1
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In an encrypted database, all data items stored at the server are encrypted and some operations can be performed directly over ciphertexts. Most existing encrypted database schemes cannot support data interoperability, that is, it cannot handle complex queries which require the output of one operator as the input to another. Wong et al. presented the encrypted database SDB (SIGMOD'14), and it is the only scheme that achieves data interoperability to the best of our knowledge. Recently, Cao et al. revisited the security of SDB (PVLDB'21) and proposed a ciphertext-only attack named "co-prime" attack. Their attack has a high success rate (84.9-99.9% on real-world benchmarks) and works on several common operations in SDB, including addition, sum, equi-join and group-by. However, the attack is time-consuming when the plaintext space (denoted as M) is large, since the time complexity is O(M2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(M<^>2)$$\end{document}, or O(M) with the meet-in-the-middle strategy. Cao et al. 's experiments showed that the attack takes similar to 25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim \,25$$\end{document} minutes on a laptop when M=220\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=2<^>{20}$$\end{document}. And the expected time cost will be 15,261 years if M=248\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=2<^>{48}$$\end{document}, which is infeasible. In addition, the authors provided the countermeasures to prevent co-prime attack. Our main contribution in this paper is twofold. First, we propose an improved ciphertext-only attack based on lattice reduction against SDB with time complexity O(1). Our attack works on not only the previous four operations discussed by Cao et al., but also some aggregate operations, and its success rate is the same as that of co-prime attack. With the same parameters, our attack only takes similar to 40\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 40$$\end{document} s on a laptop, which is 37 x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} faster than co-prime attack. Besides, our attack works for large M up to 2920\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<^>{920}$$\end{document} while the time cost remains almost unchanged. Thus, our attack is much more efficient and powerful. Next, we analyze the countermeasures proposed by Cao et al. and present an efficient attack with the orthogonal lattice reduction method, which denies the security of Cao et al.'s modified scheme. The time complexity is O(logM)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\text {log}M)$$\end{document}, and the attack takes several minutes on a laptop. Furthermore, we validate our attacks on two real-world public datasets and make some discussions.
引用
收藏
页码:1357 / 1375
页数:19
相关论文
共 50 条
  • [1] Cryptanalysis of An Encrypted Database in SIGMOD '14
    Cao, Xinle
    Liu, Jian
    Lu, Hao
    Ren, Kui
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2021, 14 (10): : 1743 - 1755
  • [2] A Symmetric Encryption Scheme Supporting Efficient Basic Query on Encrypted Data
    Hu, Dong Ping
    Yin, Ai Hua
    [J]. MANUFACTURING, DESIGN SCIENCE AND INFORMATION ENGINEERING, VOLS I AND II, 2015, : 1512 - 1516
  • [3] Data model transformation for supporting interoperability
    Benguria, Gorka
    Larrucea, Xabier
    [J]. ICCBSS 2007: SIXTH INTERNATIONAL IEEE CONFERENCE ON COMMERCIAL-OFF-THE-SHELF (COTS)-BASED SOFTWARE SYSTEMS, PROCEEDINGS, 2007, : 172 - +
  • [4] Supporting interoperability of genetic data with LOINC
    Deckard, Jamalynne
    McDonald, Clement J.
    Vreeman, Daniel J.
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2015, 22 (03) : 621 - 627
  • [5] Efficient key updates in encrypted database systems
    Hacigümüs, H
    Mehrotra, S
    [J]. SECURE DATA MANAGEMENT, PROCEEDINGS, 2005, 3674 : 1 - 15
  • [6] Efficient Parallel Summation on Encrypted Database System
    Horio, Kentaro
    Kawashima, Hideyuki
    Tatebe, Osamu
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2017, : 178 - 185
  • [7] Efficient search on encrypted data
    Joseph, LTA
    Samsudin, A
    Belaton, B
    [J]. 2005 13th IEEE International Conference on Networks Jointly held with the 2005 7th IEEE Malaysia International Conference on Communications, Proceedings 1 and 2, 2005, : 352 - 357
  • [8] An architecture for data warehousing supporting data independence and interoperability
    Cabibbo, L
    Torlone, R
    [J]. INTERNATIONAL JOURNAL OF COOPERATIVE INFORMATION SYSTEMS, 2001, 10 (03) : 377 - 397
  • [9] Efficient sharing of encrypted data
    Bennett, K
    Grothoff, C
    Horozov, T
    Patrascu, I
    [J]. INFORMATION SECURITY AND PRIVACY, 2002, 2384 : 107 - 120
  • [10] Efficient Clustering on Encrypted Data
    Zhang, Mengyu
    Wang, Long
    Zhang, Xiaoping
    Liu, Zhuotao
    Wang, Yisong
    Bao, Han
    [J]. APPLIED CRYPTOGRAPHY AND NETWORK SECURITY, ACNS 2024, PT I, 2024, 14583 : 213 - 236