Enhanced classification of crisis related tweets using deep learning models and word embeddings

被引:0
|
作者
Ramachandran D. [1 ]
Parvathi R. [1 ]
机构
[1] School of Computer Science and Engineering, Vellore Institute of Technology, Tamil Nadu, Chennai
来源
Ramachandran, Dharini (dharini.r2014@vit.ac.in) | 1600年 / Inderscience Publishers卷 / 16期
关键词
CNN; Convolutional neural network; Crisis analytics; Deep learning; GloVe and Word2Vec embeddings; Long short-term memory; LSTM; Social media text analytics; Twitter analytics;
D O I
10.1504/IJWET.2021.117773
中图分类号
学科分类号
摘要
Social media plays a crucial role during emergency events by preserving intelligence about the current condition, which may save lives. Twitter is one such powerful social media platform where information about the situational awareness is directly posted by victims or bystanders. The objective of the research is to enhance the classification of crisis related tweets by utilising the deep learning models. Our work focuses on evaluating the deep learning models, the vectorisation methods and the effect of data size on them. A multilayer perceptron (MLP), a convolutional neural network (CNN) and a long short term memory (LSTM) are employed along with the vectorisation methods (GloVe and Word2Vec), in different experiments. Based on the results pertaining to the metrics of classification and the learning graphs, the LSTM model is observed to work well. The need for measures, to improve the classification of a large twitter dataset is understood from the analysis. Copyright © 2021 Inderscience Enterprises Ltd.
引用
收藏
页码:158 / 186
页数:28
相关论文
共 50 条
  • [31] Deep text classification of Instagram data using word embeddings and weak supervision
    Hammar, Kim
    Jaradat, Shatha
    Dokoohaki, Nima
    Matskin, Mihhail
    WEB INTELLIGENCE, 2020, 18 (01) : 53 - 67
  • [32] Sentiment classification and aspect-based sentiment analysis on yelp reviews using deep learning and word embeddings
    Alamoudi, Eman Saeed
    Alghamdi, Norah Saleh
    JOURNAL OF DECISION SYSTEMS, 2021, 30 (2-3) : 259 - 281
  • [33] Classification of Traffic Event Tweets in Portuguese Language Using Deep Learning
    Teixeira, Estevan Barbara
    de Souza Moura, Pedro Nuno
    Vieira Campos, Carlos Alberto
    2022 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, IWCMC, 2022, : 566 - 571
  • [34] A comparative study on word embedding techniques for suicide prediction on COVID-19 tweets using deep learning models
    Kancharapu R.
    A Ayyagari S.N.
    International Journal of Information Technology, 2023, 15 (6) : 3293 - 3306
  • [35] Debate Stance Classification Using Word Embeddings
    Konjengbam, Anand
    Ghosh, Subrata
    Kumar, Nagendra
    Singh, Manish
    BIG DATA ANALYTICS AND KNOWLEDGE DISCOVERY (DAWAK 2018), 2018, 11031 : 382 - 395
  • [36] Using word embeddings in Twitter election classification
    Xiao Yang
    Craig Macdonald
    Iadh Ounis
    Information Retrieval Journal, 2018, 21 : 183 - 207
  • [37] Classification of Tweets Related to Natural Disasters Using Machine Learning Algorithms
    Iparraguirre-Villanueva O.
    Melgarejo-Graciano M.
    Castro-Leon G.
    Olaya-Cotera S.
    Ruiz-Alvarado J.
    Epifanía-Huerta A.
    Cabanillas-Carbonell M.
    Zapata-Paulini J.
    International Journal of Interactive Mobile Technologies, 2023, 17 (14) : 144 - 162
  • [38] Using word embeddings in Twitter election classification
    Yang, Xiao
    Macdonald, Craig
    Ounis, Iadh
    INFORMATION RETRIEVAL JOURNAL, 2018, 21 (2-3): : 183 - 207
  • [39] Using Word Embeddings and Deep Learning for Supervised Topic Detection in Social Networks
    Gutierrez-Batista, Karel
    Campana, Jesus R.
    Vila, Maria-Amparo
    Martin-Bautista, Maria J.
    FLEXIBLE QUERY ANSWERING SYSTEMS, 2019, 11529 : 155 - 165
  • [40] Knowledge-Enhanced Ensemble Learning for Word Embeddings
    Fang, Lanting
    Luo, Yong
    Feng, Kaiyu
    Zhao, Kaiqi
    Hu, Aiqun
    WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), 2019, : 427 - 437