Corneal Endothelial Cell Segmentation with Multiple Long-range Dependencies

被引:0
|
作者
Zeng, Lingxi [1 ,2 ]
Zhang, Yinglin [1 ,2 ,3 ]
Higashita, Risa [1 ,2 ,3 ,4 ]
Liu, Jiang [1 ,2 ,3 ]
机构
[1] Southern Univ Sci & Technol, Res Inst Trustworthy Autonomous Syst, Shenzhen, Guangdong, Peoples R China
[2] Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Guangdong, Peoples R China
[3] Univ Nottingham Ningbo China, China Sch Comp Sci, Ningbo, Zhejiang, Peoples R China
[4] Tomey Corp, Nagoya, Aichi, Japan
基金
中国国家自然科学基金;
关键词
Segmentation; Deep Learning; Long-range Dependency; Corneal Endothelial Cell;
D O I
10.1145/3637732.3637778
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Corneal endothelial cell segmentation is an important task in ophthalmology, but it is challenging due to variations in image characteristics across different datasets. Existing deep learning methods have limitations in capturing long-range dependencies that are critical for accurate segmentation. To address this issue, we propose a novel multiple long-range dependencies network (MLD-Net) that effectively incorporates different types of long-range dependency information to achieve robust segmentation across datasets. The network employs dilated convolutions and attention gates to capture spatial and layer-level dependencies, respectively. The entire network is densely connected, facilitating the sharing of long-range dependency information across multiple scales. We demonstrate the effectiveness of MLD-Net on four different corneal endothelium microscope image datasets: SREP, BiolmLab, Rodrep, and TM-EM3000. Our experimental results show that MLD-Net outperforms existing state-of-the-art methods, achieving robustness and high accuracy in corneal endothelial cell segmentation.
引用
收藏
页码:67 / 72
页数:6
相关论文
共 50 条
  • [31] BIM Product Style Classification and Retrieval Based on Long-Range Style Dependencies
    Cui, Jia
    Zang, Mengwei
    Liu, Zhen
    Qi, Meng
    Luo, Rong
    Gu, Zhenyu
    Lu, Hongju
    BUILDINGS, 2023, 13 (09)
  • [32] Compositional segmentation and long-range fractal correlations in DNA sequences
    BernaolaGalvan, P
    RomanRoldan, R
    Oliver, JL
    PHYSICAL REVIEW E, 1996, 53 (05): : 5181 - 5189
  • [33] Compositional segmentation and long-range fractal correlations in DNA sequences
    Bernaola-Galvan, Pedro
    Roman-Roldan, Ramon
    Oliver, Jose L.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1996, 53 (5-B pt B):
  • [34] ABSENCE OF LONG-RANGE ORDER WITH LONG-RANGE POTENTIALS
    BAUS, M
    JOURNAL OF STATISTICAL PHYSICS, 1980, 22 (01) : 111 - 119
  • [35] Long-range coherence in cell-cell attraction
    Tomita, M
    Fukuuchi, Y
    Tanahashi, N
    Kobari, M
    Konno, S
    Takeda, H
    Yokoyama, M
    Takao, M
    Aoyama, M
    6TH WORLD CONGRESS FOR MICROCIRCULATION, 1996, : 421 - 425
  • [36] Structural Priors Guided Network for the Corneal Endothelial Cell Segmentation
    Zhang, Yinglin
    Xi, Ruiling
    Zeng, Lingxi
    Towey, Dave
    Bai, Ruibin
    Higashita, Risa
    Liu, Jiang
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (01) : 309 - 320
  • [37] Long-range stress transmission guides endothelial gap formation
    Hardin, C. Corey
    Chattoraj, Joyjit
    Manomohan, Greeshma
    Colombo, Jader
    Trong Nguyen
    Tambe, Dhananjay
    Fredberg, Jeffrey J.
    Birukov, Konstantin
    Butler, James P.
    Del Gado, Emanuela
    Krishnan, Ramaswamy
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2018, 495 (01) : 749 - 754
  • [38] Cell Divisions Cause Long-Range Well-Ordered Vorticity Patterns in Endothelial Tissue
    Rossen, Ninna S.
    Tarp, Jens M.
    Mathiesen, Joachim
    Jensen, Mogens H.
    Oddershede, Lene
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : 425A - 425A
  • [40] Shaken, and Stirred: Long-Range Dependencies Enable Robust Outlier Detection with PixelCNN plus
    Umapathi, Barath Mohan
    Chauhan, Kushal
    Shenoy, Pradeep
    Sridharan, Devarajan
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 1440 - 1450