Corneal Endothelial Cell Segmentation with Multiple Long-range Dependencies

被引:0
|
作者
Zeng, Lingxi [1 ,2 ]
Zhang, Yinglin [1 ,2 ,3 ]
Higashita, Risa [1 ,2 ,3 ,4 ]
Liu, Jiang [1 ,2 ,3 ]
机构
[1] Southern Univ Sci & Technol, Res Inst Trustworthy Autonomous Syst, Shenzhen, Guangdong, Peoples R China
[2] Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Guangdong, Peoples R China
[3] Univ Nottingham Ningbo China, China Sch Comp Sci, Ningbo, Zhejiang, Peoples R China
[4] Tomey Corp, Nagoya, Aichi, Japan
基金
中国国家自然科学基金;
关键词
Segmentation; Deep Learning; Long-range Dependency; Corneal Endothelial Cell;
D O I
10.1145/3637732.3637778
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Corneal endothelial cell segmentation is an important task in ophthalmology, but it is challenging due to variations in image characteristics across different datasets. Existing deep learning methods have limitations in capturing long-range dependencies that are critical for accurate segmentation. To address this issue, we propose a novel multiple long-range dependencies network (MLD-Net) that effectively incorporates different types of long-range dependency information to achieve robust segmentation across datasets. The network employs dilated convolutions and attention gates to capture spatial and layer-level dependencies, respectively. The entire network is densely connected, facilitating the sharing of long-range dependency information across multiple scales. We demonstrate the effectiveness of MLD-Net on four different corneal endothelium microscope image datasets: SREP, BiolmLab, Rodrep, and TM-EM3000. Our experimental results show that MLD-Net outperforms existing state-of-the-art methods, achieving robustness and high accuracy in corneal endothelial cell segmentation.
引用
收藏
页码:67 / 72
页数:6
相关论文
共 50 条
  • [1] Activation extending based on long-range dependencies for weakly supervised semantic segmentation
    Liu, Haipeng
    Zhao, Yibo
    Wang, Meng
    Ma, Meiyan
    Chen, Zhaoyu
    PLOS ONE, 2023, 18 (11):
  • [2] Pancreatic cancer pathology image segmentation with channel and spatial long-range dependencies
    Chen, Zhao-Min
    Liao, Yifan
    Zhou, Xingjian
    Yu, Wenyao
    Zhang, Guodao
    Ge, Yisu
    Ke, Tan
    Shi, Keqing
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 169
  • [3] Online learning of long-range dependencies
    Zucchet, Nicolas
    Meier, Robert
    Schug, Simon
    Mujika, Asier
    Sacramento, Joao
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [4] Long-Range Dependencies in Algorithmic Computing
    Strzalka, Dominik
    Grabowski, Franciszek
    2008 CONFERENCE ON HUMAN SYSTEM INTERACTIONS, VOLS 1 AND 2, 2008, : 570 - 575
  • [5] CAPTURING LONG-RANGE DEPENDENCIES IN VIDEO CAPTIONING
    Lee, Jaeyoung
    Lee, Yekang
    Seong, Sihyeon
    Kim, Kyungsu
    Kim, Sungjin
    Kim, Junmo
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 1880 - 1884
  • [6] INVESTIGATION OF LONG-RANGE DEPENDENCIES IN DAILY GPS SOLUTIONS
    Klos, Anna
    Bogusz, Janusz
    Figurski, Mariusz
    Kujawa, Marcin
    INTERNATIONAL WORK-CONFERENCE ON TIME SERIES (ITISE 2014), 2014, : 434 - 434
  • [7] Testing for a break in persistence under long-range dependencies
    Sibbertsen, Philipp
    Kruse, Robinson
    JOURNAL OF TIME SERIES ANALYSIS, 2009, 30 (03) : 263 - 285
  • [8] Long-range dependencies in heart rate signals - revisited
    Makowiec, Danuta
    Galaska, Rafal
    Dudkowska, Aleksandra
    Rynkiewicz, Andrzej
    Zwierz, Marcin
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 369 (02) : 632 - 644
  • [9] MSR-UNet: enhancing multi-scale and long-range dependencies in medical image segmentation
    Wang, Shuai
    Liu, Lei
    Wang, Jun
    Peng, Xinyue
    Liu, Baosen
    PeerJ Computer Science, 2024, 10
  • [10] Addressing multiple salient object detection via dual-space long-range dependencies
    Deng, Bowen
    French, Andrew P.
    Pound, Michael P.
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2023, 235