Prediction of Failure of Induction of Labor from Ultrasound Images Using Radiomic Features

被引:1
|
作者
Garcia Ocana, Maria Inmaculada [1 ,2 ]
Lopez-Linares Roman, Karen [1 ,2 ]
Burgos San Cristobal, Jorge [3 ]
del Campo Real, Ana [3 ]
Macia Oliver, Ivan [1 ,2 ]
机构
[1] Vicomtech, San Sebastian, Spain
[2] Biodonostia Hlth Res Inst, San Sebastian, Spain
[3] Univ Basque Country, Cruces Univ Hosp, Biocruces Bizkaia Hlth Res Inst, Obstet & Gynecol Serv, Baracaldo, Spain
关键词
Radiomics; Ultrasound; Induction of labor; Machine learning;
D O I
10.1007/978-3-030-32875-7_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Induction of labor (IOL) is a very common procedure in current obstetrics; about 20% of women who undergo IOL at term pregnancy end up needing a cesarean section (C-section). The standard method to assess the risk of C-section, known as Bishop Score, is subjective and inconsistent. Thus, in this paper a novel method to predict the failure of IOL is presented, based on the analysis of B-mode transvaginal ultrasound (US) images. Advanced radiomic analyses from these images are combined with sonographic measurements (e.g. cervical length, cervical angle) and clinical data from a total of 182 patients to generate the predictive model. Different machine learning methods are compared, achieving a maximum AUC of 0.75, with 69% sensitivity and 71% specificity when using a Random Forest classifier. These preliminary results suggest that features obtained from US images can be used to estimate the risk of IOL failure, providing the practitioners with an objective method to choose the most personalized treatment for each patient.
引用
收藏
页码:153 / 160
页数:8
相关论文
共 50 条
  • [1] Prediction of ovarian cancer prognosis using statistical radiomic features of ultrasound images
    Zuo, Ruochen
    Li, Xiuru
    Hu, Jiaqi
    Wang, Wenqian
    Lu, Bingjian
    Zhang, Honghe
    Cheng, Xiaodong
    Lu, Weiguo
    Qin, Jiale
    Liu, Pengyuan
    Lu, Yan
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (12):
  • [2] Prediction of Glioma Grade Using Intratumoral and Peritumoral Radiomic Features From Multiparametric MRI Images
    Cheng, Jianhong
    Liu, Jin
    Yue, Hailin
    Bai, Harrison
    Pan, Yi
    Wang, Jianxin
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (02) : 1084 - 1095
  • [3] Prediction of Gleason score in prostate cancer patients based on radiomic features of transrectal ultrasound images
    Cheng, Tao
    Li, Huiming
    BRITISH JOURNAL OF RADIOLOGY, 2024, 97 (1154): : 415 - 421
  • [4] Prediction of CT radiomic features using PET radiomic features and vice versa
    Jha, A.
    Mithun, S.
    Sherkhane, U. B.
    Jaiswar, V.
    Mehta, G.
    Nautiyal, A.
    Purandare, N.
    Rangarajan, V.
    Dekker, A.
    Wee, L.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (SUPPL 1) : S509 - S509
  • [5] Classification of Molecular Subtypes of Breast Cancer Using Radiomic Features of Preoperative Ultrasound Images
    Zhang, Hongxia
    Wang, Leilei
    Lin, Yayun
    Ha, Xiaoming
    Huang, Chunyan
    Han, Chao
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2025,
  • [6] Prediction of Failure to Progress after Labor Induction: A Multivariable Model Using Pelvic Ultrasound and Clinical Data
    Novillo-Del Alamo, Blanca
    Martinez-Varea, Alicia
    Satorres-Perez, Elena
    Nieto-Tous, Mar
    Modrego-Pardo, Fernando
    Padilla-Prieto, Carmen
    Garcia-Florenciano, Maria Victoria
    de Velasco, Silvia Bello-Martinez
    Morales-Rosello, Jose
    JOURNAL OF PERSONALIZED MEDICINE, 2024, 14 (05):
  • [7] The vague of ultrasound in the prediction of successful induction of labor
    Rane, SM
    Guirgis, RR
    Higgins, B
    Nicolaides, KH
    ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2004, 24 (05) : 538 - 549
  • [8] Radiomic Analysis of Transvaginal Ultrasound Cervical Images for Prediction of Preterm Birth
    Cancino, William
    Becerra-Mojica, Carlos Hernan
    Pertuz, Said
    MEDICAL IMAGE UNDERSTANDING AND ANALYSIS, PT II, MIUA 2024, 2024, 14860 : 414 - 424
  • [9] Selecting radiomic features from FDG-PET images for cancer treatment outcome prediction
    Lian, Chunfeng
    Ruan, Su
    Denoeux, Thierry
    Jardin, Fabrice
    Vera, Pierre
    MEDICAL IMAGE ANALYSIS, 2016, 32 : 257 - 268
  • [10] Prediction of Prostate Cancer Grades Using Radiomic Features
    Yamamoto, Yasuhiro
    Haraguchi, Takafumi
    Matsuda, Kaori
    Okazaki, Yoshio
    Kimoto, Shin
    Tanji, Nozomu
    Matsumoto, Atsushi
    Kobayashi, Yasuyuki
    Mimura, Hidefumi
    Hiraki, Takao
    ACTA MEDICA OKAYAMA, 2025, 79 (01) : 21 - 30