Self-Supervised Spiking Neural Networks applied to Digit Classification

被引:3
|
作者
Chamand, Benjamin [1 ]
Joly, Philippe [1 ]
机构
[1] Univ Toulouse, IRIT, CNRS, Toulouse INP,UT3, Toulouse, France
关键词
spiking neural networks; self-supervised learning; representation learning; computer vision;
D O I
10.1145/3549555.3549559
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The self-supervised learning (SSL) paradigm is a rapidly growing research area in recent years with promising results, especially in the field of image processing. In order for these models to converge towards the creation of discriminative representations, a data augmentation is applied to the input data that feeds two-branch networks. On the other hand, Spiking Neural Networks (SNNs) are attracting a growing community due to their ability to process temporal information, their low-energy consumption and their high biological plausibility. Thanks to the use of Poisson process stochasticity to encode the same data into different temporal representations, and the success of using surrogate gradient on learning, we propose a self-supervised learning method applied to an SNN network, and we make a preliminary study on the generated representations. We have shown its feasibility by training our architecture on a dataset of images of digits (MNIST), then we have evaluated the representations with two classification methods.
引用
收藏
页码:196 / 200
页数:5
相关论文
共 50 条
  • [31] SELF-SUPERVISED ADAPTIVE NETWORKS
    LUTTRELL, SP
    IEE PROCEEDINGS-F RADAR AND SIGNAL PROCESSING, 1992, 139 (06) : 371 - 377
  • [32] Spiking Neural Networks applied to the classification of motor tasks in EEG signals
    Virgilio G, Carlos D.
    Sossa A, Juan H.
    Antelis, Javier M.
    Falcon, Luis E.
    NEURAL NETWORKS, 2020, 122 : 130 - 143
  • [33] Supervised Learning of Single-Layer Spiking Neural Networks for Image Classification
    Ma, Qiang
    Lin, Xianghong
    Wang, Xiangwen
    2018 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE APPLICATIONS AND TECHNOLOGIES (AIAAT 2018), 2018, 435
  • [34] Exploring Self-supervised Capsule Networks for Improved Classification with Data Scarcity
    Wittscher, Ladyna
    Pigorsch, Christian
    THIRD INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND CAPSULE NETWORKS (ICIPCN 2022), 2022, 514 : 36 - 50
  • [35] Self-supervised autoencoders for clustering and classification
    Paraskevi Nousi
    Anastasios Tefas
    Evolving Systems, 2020, 11 : 453 - 466
  • [36] Self-supervised regularization for text classification
    Zhou M.
    Li Z.
    Xie P.
    Transactions of the Association for Computational Linguistics, 2021, 9 : 1147 - 1162
  • [37] Self-supervised autoencoders for clustering and classification
    Nousi, Paraskevi
    Tefas, Anastasios
    EVOLVING SYSTEMS, 2020, 11 (03) : 453 - 466
  • [38] Self-supervised Regularization for Text Classification
    Zhou, Meng
    Li, Zechen
    Xie, Pengtao
    TRANSACTIONS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 2021, 9 : 641 - 656
  • [39] Digit Recognition Using Spiking Neural Networks on FPGA
    Koravuna, Shamini
    Sanaullah
    Jungeblut, Thorsten
    Rueckert, Ulrich
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2023, PT I, 2023, 14134 : 406 - 417
  • [40] Self-supervised category-enhanced graph neural networks for recommendation
    Yang, Funing
    Du, Haihui
    Zhang, Xingliang
    Yang, Yongjian
    Wang, Ying
    KNOWLEDGE-BASED SYSTEMS, 2025, 311