Inferring gene regulatory networks from single-cell multiome data using atlas-scale external data

被引:16
|
作者
Yuan, Qiuyue [1 ]
Duren, Zhana [1 ]
机构
[1] Clemson Univ, Ctr Human Genet, Dept Genet & Biochem, Greenwood, SC 29646 USA
基金
美国国家卫生研究院;
关键词
INFLAMMATORY-BOWEL-DISEASE; NF-KAPPA-B; TRANSCRIPTION FACTOR; PAIRED EXPRESSION; OPEN CHROMATIN; TIME; INFERENCE; DIFFERENTIATION; ROLES; NR4A1;
D O I
10.1038/s41587-024-02182-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Existing methods for gene regulatory network (GRN) inference rely on gene expression data alone or on lower resolution bulk data. Despite the recent integration of chromatin accessibility and RNA sequencing data, learning complex mechanisms from limited independent data points still presents a daunting challenge. Here we present LINGER (Lifelong neural network for gene regulation), a machine-learning method to infer GRNs from single-cell paired gene expression and chromatin accessibility data. LINGER incorporates atlas-scale external bulk data across diverse cellular contexts and prior knowledge of transcription factor motifs as a manifold regularization. LINGER achieves a fourfold to sevenfold relative increase in accuracy over existing methods and reveals a complex regulatory landscape of genome-wide association studies, enabling enhanced interpretation of disease-associated variants and genes. Following the GRN inference from reference single-cell multiome data, LINGER enables the estimation of transcription factor activity solely from bulk or single-cell gene expression data, leveraging the abundance of available gene expression data to identify driver regulators from case-control studies. Accuracy of gene regulatory network inference is increased by combining multiome single-cell and atlas-scale bulk data.
引用
收藏
页码:247 / 257
页数:23
相关论文
共 50 条
  • [21] Inferring gene regulatory networks from single-cell transcriptomics based on graph embedding
    Gan, Yanglan
    Yu, Jiacheng
    Xu, Guangwei
    Yan, Cairong
    Zou, Guobing
    BIOINFORMATICS, 2024, 40 (05)
  • [22] Atlas-scale single-cell chromatin accessibility using nanowell-based combinatorial indexing
    O'Connell, Brendan L.
    Nichols, Ruth V.
    Pokholok, Dmitry
    Thomas, Jerushah
    Acharya, Sonia N.
    Nishida, Andrew
    Thornton, Casey A.
    Co, Marissa
    Fields, Andrew J.
    Steemers, Frank J.
    Adey, Andrew C.
    GENOME RESEARCH, 2023, 33 (02) : 208 - 217
  • [23] scJoint integrates atlas-scale single-cell RNA-seq and ATAC-seq data with transfer learning
    Yingxin Lin
    Tung-Yu Wu
    Sheng Wan
    Jean Y. H. Yang
    Wing H. Wong
    Y. X. Rachel Wang
    Nature Biotechnology, 2022, 40 : 703 - 710
  • [24] Atlas-scale single-cell DNA methylation profiling with sciMETv3
    Nichols, Ruth V.
    Rylaarsdam, Lauren E.
    O'Connell, Brendan L.
    Shipony, Zohar
    Iremadze, Nika
    Acharya, Sonia N.
    Adey, Andrew C.
    CELL GENOMICS, 2025, 5 (01):
  • [25] scLink: Inferring Sparse Gene Co-expression Networks from Single-cell Expression Data
    Li, Wei Vivian
    Li, Yanzeng
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2021, 19 (03) : 475 - 492
  • [26] scMGATGRN: a multiview graph attention network-based method for inferring gene regulatory networks from single-cell transcriptomic data
    Yuan, Lin
    Zhao, Ling
    Jiang, Yufeng
    Shen, Zhen
    Zhang, Qinhu
    Zhang, Ming
    Zheng, Chun-Hou
    Huang, De-Shuang
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (06)
  • [27] scLink: Inferring Sparse Gene Co-expression Networks from Single-cell Expression Data
    Wei Vivian Li
    Yanzeng Li
    Genomics,Proteomics & Bioinformatics, 2021, (03) : 475 - 492
  • [28] Regulatory analysis of single cell multiome gene expression and chromatin accessibility data with scREG
    Zhana Duren
    Fengge Chang
    Fnu Naqing
    Jingxue Xin
    Qiao Liu
    Wing Hung Wong
    Genome Biology, 23
  • [29] Deep learning for inferring gene relationships from single-cell expression data
    Yuan, Ye
    Bar-Joseph, Ziv
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (52) : 27151 - 27158
  • [30] Inferring transcription factor regulatory networks from single-cell ATAC-seq data based on graph neural networks
    Li, Hao
    Sun, Yu
    Hong, Hao
    Huang, Xin
    Tao, Huan
    Huang, Qiya
    Wang, Longteng
    Xu, Kang
    Gan, Jingbo
    Chen, Hebing
    Bo, Xiaochen
    NATURE MACHINE INTELLIGENCE, 2022, 4 (04) : 389 - +