Inferring gene regulatory networks from single-cell multiome data using atlas-scale external data

被引:16
|
作者
Yuan, Qiuyue [1 ]
Duren, Zhana [1 ]
机构
[1] Clemson Univ, Ctr Human Genet, Dept Genet & Biochem, Greenwood, SC 29646 USA
基金
美国国家卫生研究院;
关键词
INFLAMMATORY-BOWEL-DISEASE; NF-KAPPA-B; TRANSCRIPTION FACTOR; PAIRED EXPRESSION; OPEN CHROMATIN; TIME; INFERENCE; DIFFERENTIATION; ROLES; NR4A1;
D O I
10.1038/s41587-024-02182-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Existing methods for gene regulatory network (GRN) inference rely on gene expression data alone or on lower resolution bulk data. Despite the recent integration of chromatin accessibility and RNA sequencing data, learning complex mechanisms from limited independent data points still presents a daunting challenge. Here we present LINGER (Lifelong neural network for gene regulation), a machine-learning method to infer GRNs from single-cell paired gene expression and chromatin accessibility data. LINGER incorporates atlas-scale external bulk data across diverse cellular contexts and prior knowledge of transcription factor motifs as a manifold regularization. LINGER achieves a fourfold to sevenfold relative increase in accuracy over existing methods and reveals a complex regulatory landscape of genome-wide association studies, enabling enhanced interpretation of disease-associated variants and genes. Following the GRN inference from reference single-cell multiome data, LINGER enables the estimation of transcription factor activity solely from bulk or single-cell gene expression data, leveraging the abundance of available gene expression data to identify driver regulators from case-control studies. Accuracy of gene regulatory network inference is increased by combining multiome single-cell and atlas-scale bulk data.
引用
收藏
页码:247 / 257
页数:23
相关论文
共 50 条
  • [1] Integrated Pipelines for Inferring Gene Regulatory Networks from Single-Cell Data
    Chen, Aimin
    Zhou, Tianshou
    Tian, Tianhai
    CURRENT BIOINFORMATICS, 2022, 17 (07) : 559 - 564
  • [2] Inferring gene regulatory networks from single-cell data: a mechanistic approach
    Herbach, Ulysse
    Bonnaffoux, Arnaud
    Espinasse, Thibault
    Gandrillon, Olivier
    BMC SYSTEMS BIOLOGY, 2017, 11
  • [3] Inferring Gene Regulatory Networks From Single-Cell Transcriptomic Data Using Bidirectional RNN
    Gan, Yanglan
    Hu, Xin
    Zou, Guobing
    Yan, Cairong
    Xu, Guangwei
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [5] Deep learning-based cell-specific gene regulatory networks inferred from single-cell multiome data
    Xu, Junlin
    Lu, Changcheng
    Jin, Shuting
    Meng, Yajie
    Fu, Xiangzheng
    Zeng, Xiangxiang
    Nussinov, Ruth
    Cheng, Feixiong
    NUCLEIC ACIDS RESEARCH, 2025, 53 (05)
  • [6] Inferring better gene regulation networks from single-cell data
    Stumpf, Michael P. H.
    CURRENT OPINION IN SYSTEMS BIOLOGY, 2021, 27
  • [7] Inferring gene regulatory network from single-cell transcriptomic data by integrating multiple prior networks
    Gan, Yanglan
    Xin, Yongchang
    Hu, Xin
    Zou, Guobing
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2021, 93 (93)
  • [8] Inferring Gene Regulatory Networks from Single-Cell Time-Course Data Based on Temporal Convolutional Networks
    Tan, Dayu
    Wang, Jing
    Cheng, Zhaolong
    Su, Yansen
    Zheng, Chunhou
    CURRENT BIOINFORMATICS, 2024, 19 (08) : 752 - 764
  • [9] Mapping gene regulatory networks from single-cell omics data
    Fiers, Mark W. E. J.
    Minnoye, Liesbeth
    Aibar, Sara
    Gonzalez-Blas, Carmen Bravo
    Atak, Zeynep Kalender
    Aerts, Stein
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2018, 17 (04) : 246 - 254
  • [10] Using single cell atlas data to reconstruct regulatory networks
    Song, Qi
    Ruffalo, Matthew
    Bar-Joseph, Ziv
    NUCLEIC ACIDS RESEARCH, 2023, 51 (07) : E38 - E38