Integrating artificial intelligence, machine learning, and deep learning approaches into remediation of contaminated sites: A review

被引:6
|
作者
Janga J.K. [1 ]
Reddy K.R. [1 ]
Raviteja K.V.N.S. [2 ]
机构
[1] University of Illinois Chicago, Department of Civil, Materials, and Environmental Engineering, 842 West Taylor Street, Chicago, 60607, IL
[2] SRM University AP, Department of Civil Engineering, Andhra Pradesh, Guntur
关键词
Big data; Data-driven approach; Decision-making; Environmental remediation; Optimization; Surrogate models;
D O I
10.1016/j.chemosphere.2023.140476
中图分类号
学科分类号
摘要
The growing number of contaminated sites across the world pose a considerable threat to the environment and human health. Remediating such sites is a cumbersome process with the complexity originating from the need for extensive sampling and testing during site characterization. Selection and design of remediation technology is further complicated by the uncertainties surrounding contaminant attributes, concentration, as well as soil and groundwater properties, which influence the remediation efficiency. Additionally, challenges emerge in identifying contamination sources and monitoring the affected area. Often, these problems are overly simplified, and the data gathered is underutilized rendering the remediation process inefficient. The potential of artificial intelligence (AI), machine-learning (ML), and deep-learning (DL) to address these issues is noteworthy, as their emergence revolutionized the process of data management/analysis. Researchers across the world are increasingly leveraging AI/ML/DL to address remediation challenges. Current study aims to perform a comprehensive literature review on the integration of AI/ML/DL tools into contaminated site remediation. A brief introduction to various emerging and existing AI/ML/DL technologies is presented, followed by a comprehensive literature review. In essence, ML/DL based predictive models can facilitate a thorough understanding of contamination patterns, reducing the need for extensive soil and groundwater sampling. Additionally, AI/ML/DL algorithms can play a pivotal role in identifying optimal remediation strategies by analyzing historical data, simulating scenarios through surrogate models, parameter-optimization using nature inspired algorithms, and enhancing decision-making with AI-based tools. Overall, with supportive measures like open-data policies and data integration, AI/ML/DL possess the potential to revolutionize the practice of contaminated site remediation. © 2023 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [41] Artificial intelligence, machine learning and deep learning in musculoskeletal imaging: Current applications
    D'Angelo, Tommaso
    Caudo, Danilo
    Blandino, Alfredo
    Albrecht, Moritz H.
    Vogl, Thomas J.
    Gruenewald, Leon D.
    Gaeta, Michele
    Yel, Ibrahim
    Koch, Vitali
    Martin, Simon S.
    Lenga, Lukas
    Muscogiuri, Giuseppe
    Sironi, Sandro
    Mazziotti, Silvio
    Booz, Christian
    [J]. JOURNAL OF CLINICAL ULTRASOUND, 2022, 50 (09) : 1414 - 1431
  • [42] Artificial intelligence, machine learning and deep learning: Potential resources for the infection clinician
    Theodosiou, Anastasia A.
    Read, Robert C.
    [J]. JOURNAL OF INFECTION, 2023, 87 (04) : 287 - 294
  • [43] Understanding and interpreting artificial intelligence, machine learning and deep learning in Emergency Medicine
    Ramlakhan, Shammi
    Saatchi, Reza
    Sabir, Lisa
    Singh, Yardesh
    Hughes, Ruby
    Shobayo, Olamilekan
    Ventour, Dale
    [J]. EMERGENCY MEDICINE JOURNAL, 2022, 39 (05) : 380 - 385
  • [44] Artificial Intelligence and Machine Learning inNeuroregeneration: A Systematic Review
    Mulpuri, Rajendra P.
    Konda, Nikhitha
    Gadde, Sai T.
    Amalakanti, Sridhar
    Valiveti, Sindhu Chowdary
    [J]. CUREUS JOURNAL OF MEDICAL SCIENCE, 2024, 16 (05)
  • [45] Artificial intelligence and machine learning in cardiotocography: A scoping review
    Aeberhard, Jasmin L.
    Radan, Anda-Petronela
    Delgado-Gonzalo, Ricard
    Strahm, Karin Maya
    Sigurthorsdottir, Halla Bjorg
    Schneider, Sophie
    Surbek, Daniel
    [J]. EUROPEAN JOURNAL OF OBSTETRICS & GYNECOLOGY AND REPRODUCTIVE BIOLOGY, 2023, 281 : 54 - 62
  • [46] Introduction to artificial intelligence and machine learning into orthodontics: A review
    Kondody, Rony T.
    Patil, Aishwarya
    Devika, G.
    Jose, Angeline
    Kumar, Ashwath
    Nair, Saumya
    [J]. APOS TRENDS IN ORTHODONTICS, 2022, 12 (03) : 214 - 220
  • [47] Artificial Intelligence and Machine Learning in Marketing: A Bibliometric Review
    Kushwaha, Pooja S.
    Badhera, Usha
    [J]. PACIFIC BUSINESS REVIEW INTERNATIONAL, 2023, 15 (05): : 55 - 66
  • [48] Artificial Intelligence and Machine Learning in Electrophysiology—a Short Review
    Shahrukh Khan
    Chanho Lim
    Humza Chaudhry
    Ala Assaf
    Eoin Donnelan
    Nassir Marrouche
    Omar Kreidieh
    [J]. Current Treatment Options in Cardiovascular Medicine, 2023, 25 : 443 - 460
  • [49] Artificial intelligence and machine learning in finance: A bibliometric review
    Ahmed, Shamima
    Alshater, Muneer M.
    El Ammari, Anis
    Hammami, Helmi
    [J]. RESEARCH IN INTERNATIONAL BUSINESS AND FINANCE, 2022, 61
  • [50] Application of artificial intelligence and machine learning for BIM: review
    Bassir D.
    Lodge H.
    Chang H.
    Majak J.
    Chen G.
    [J]. International Journal for Simulation and Multidisciplinary Design Optimization, 2023, 14