Bethe ansatz equations for quantum N=2 KdV systems

被引:0
|
作者
Kolyaskin, Dmitry [1 ]
Litvinov, Alexey [2 ,3 ]
机构
[1] Australian Natl Univ, Canberra, ACT 2601, Australia
[2] Skolkovo Inst Sci & Technol, Krichever Ctr Adv Studies, Moscow 143026, Russia
[3] Landau Inst Theoret Phys, Chernogolovka 142432, Russia
基金
俄罗斯科学基金会;
关键词
CONFORMAL FIELD-THEORY; INTEGRABLE STRUCTURE; Q-OPERATORS;
D O I
10.1016/j.nuclphysb.2024.116506
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Based on our previous studies of affine Yangian of (gl) over cap (1 vertical bar 1) we propose Bethe ansatz equations for the spectrum of N = 2 quantum KdV systems.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Finite Type Modules and Bethe Ansatz Equations
    Feigin, Boris
    Jimbo, Michio
    Miwa, Tetsuji
    Mukhin, Eugene
    ANNALES HENRI POINCARE, 2017, 18 (08): : 2543 - 2579
  • [32] Finite Type Modules and Bethe Ansatz Equations
    Boris Feigin
    Michio Jimbo
    Tetsuji Miwa
    Eugene Mukhin
    Annales Henri Poincaré, 2017, 18 : 2543 - 2579
  • [33] Landau levels from the Bethe Ansatz equations
    Hoshi, K
    Hatsugai, Y
    PHYSICAL REVIEW B, 2000, 61 (07) : 4409 - 4412
  • [34] The thermodynamic Bethe Ansatz and a connection with Painleve equations
    Tracy, CA
    Widom, H
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1997, 11 (1-2): : 69 - 74
  • [35] Large-N and Bethe ansatz
    Jurco, B
    MODERN PHYSICS LETTERS A, 2004, 19 (22) : 1661 - 1667
  • [36] Strong coupling limit of Bethe ansatz equations
    Kostov, Ivan
    Serban, Didina
    Volin, Dmytro
    NUCLEAR PHYSICS B, 2008, 789 (03) : 413 - 451
  • [37] Algebraic Bethe Ansatz for N=4
    Jakubczyk, D.
    Lulek, T.
    Jakubczyk, P.
    Lulek, B.
    SYMMETRY AND STRUCTURAL PROPERTIES OF CONDENSED MATTER, 2010, 213
  • [38] ANALYSIS OF THE BETHE-ANSATZ EQUATIONS FOR THE ANISOTROPIC SU(2) CHAIN
    ALCARAZ, FC
    MARTINS, MJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (03): : L99 - L104
  • [39] Bethe ansatz for a quantum supercoset sigma model
    Mann, N
    Polchinski, J
    PHYSICAL REVIEW D, 2005, 72 (08)
  • [40] Bethe ansatz for quantum-deformed strings
    Fiona K. Seibold
    Alessandro Sfondrini
    Journal of High Energy Physics, 2021