Spectral characterization of intraoperative renal perfusion using hyperspectral imaging and artificial intelligence

被引:3
|
作者
Studier-Fischer, A. [1 ,2 ,3 ,4 ]
Bressan, M. [1 ]
Qasim, A. bin [5 ,6 ,7 ,8 ]
Oezdemir, B. [1 ,3 ,4 ]
Sellner, J. [5 ,6 ,7 ,8 ,9 ]
Seidlitz, S. [5 ,6 ,7 ,8 ,9 ]
Haney, C. M. [2 ,3 ,4 ]
Egen, L. [2 ,3 ,4 ]
Michel, M. [2 ,3 ,4 ]
Dietrich, M. [10 ]
Salg, G. A. [1 ]
Billmann, F. [1 ]
Nienhueser, H. [1 ]
Hackert, T. [11 ]
Mueller, B. P. [12 ]
Maier-Hein, L. [5 ,6 ,7 ,8 ,9 ]
Nickel, F. [1 ,6 ,11 ]
Kowalewski, K. F. [2 ,3 ,4 ]
机构
[1] Heidelberg Univ Hosp, Dept Gen Visceral & Transplantat Surg, Heidelberg, Germany
[2] Heidelberg Univ, Univ Med Ctr Mannheim, Med Fac, Dept Urol & Urosurgery, Mannheim, Germany
[3] German Canc Res Ctr DKFZ Heidelberg, Div Intelligent Syst & Robot Urol ISRU, Heidelberg, Germany
[4] Univ Med Ctr Mannheim, DKFZ Hector Canc Inst, Mannheim, Germany
[5] German Canc Res Ctr DKFZ Heidelberg, Div Intelligent Med Syst, Heidelberg, Germany
[6] Helmholtz Informat & Data Sci Sch Hlth, HIDSS4Hlth, HIDSS4Health, Heidelberg, Germany
[7] Natl Ctr Tumor Dis NCT Heidelberg, DKFZ, Heidelberg, Germany
[8] Heidelberg Univ Hosp, Heidelberg, Germany
[9] Heidelberg Univ, Fac Math & Comp Sci, Heidelberg, Germany
[10] Heidelberg Univ Hosp, Dept Anesthesiol, Heidelberg, Germany
[11] Univ Med Ctr Hamburg Eppendorf, Dept Gen Visceral & Thorac Surg, Hamburg, Germany
[12] Univ Digest Healthcare Ctr Basel, Dept Digest Surg, Basel, Switzerland
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
基金
欧洲研究理事会;
关键词
Hyperspectral imaging; Renal perfusion; Renal malperfusion; Translational research; Porcine model; Machine learning; Surgery; Surgical data science; SURGICAL-MANAGEMENT; QUALITY;
D O I
10.1038/s41598-024-68280-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurate intraoperative assessment of organ perfusion is a pivotal determinant in preserving organ function e.g. during kidney surgery including partial nephrectomy or kidney transplantation. Hyperspectral imaging (HSI) has great potential to objectively describe and quantify this perfusion as opposed to conventional surrogate techniques such as ultrasound flowmeter, indocyanine green or the subjective eye of the surgeon. An established live porcine model under general anesthesia received median laparotomy and renal mobilization. Different scenarios that were measured using HSI were (1) complete, (2) gradual and (3) partial malperfusion. The differences in spectral reflectance as well as HSI oxygenation (StO2) between different perfusion states were compelling and as high as 56.9% with 70.3% (+/- 11.0%) for "physiological" vs. 13.4% (+/- 3.1%) for "venous congestion". A machine learning (ML) algorithm was able to distinguish between these perfusion states with a balanced prediction accuracy of 97.8%. Data from this porcine study including 1300 recordings across 57 individuals was compared to a human dataset of 104 recordings across 17 individuals suggesting clinical transferability. Therefore, HSI is a highly promising tool for intraoperative microvascular evaluation of perfusion states with great advantages over existing surrogate techniques. Clinical trials are required to prove patient benefit.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Rapid Automated Analysis of Skull Base Tumor Specimens Using Intraoperative Optical Imaging and Artificial Intelligence
    Jiang, Cheng
    Bhattacharya, Abhishek
    Linzey, Joseph R. R.
    Joshi, Rushikesh S. S.
    Cha, Sung Jik
    Srinivasan, Sudharsan
    Alber, Daniel
    Kondepudi, Akhil
    Urias, Esteban
    Pandian, Balaji
    Al-Holou, Wajd N. N.
    Sullivan, Stephen E. E.
    Thompson, B. Gregory
    Heth, Jason A. A.
    Freudiger, Christian W. W.
    Khalsa, Siri Sahib S.
    Pacione, Donato R. R.
    Golfinos, John G. G.
    Camelo-Piragua, Sandra
    Orringer, Daniel A. A.
    Lee, Honglak
    Hollon, Todd C. C.
    NEUROSURGERY, 2022, 90 (06) : 758 - 767
  • [22] Spectral Intelligence: AI-Driven Hyperspectral Imaging for Agricultural and Ecosystem Applications
    Ali, Faizan
    Razzaq, Ali
    Tariq, Waheed
    Hameed, Akhtar
    Rehman, Abdul
    Razzaq, Khizar
    Sarfraz, Sohaib
    Rajput, Nasir Ahmed
    Zaki, Haitham E. M.
    Shahid, Muhammad Shafiq
    Ondrasek, Gabrijel
    AGRONOMY-BASEL, 2024, 14 (10):
  • [23] Compressive Hyperspectral Imaging and Unmixing Using Spectral Library
    Chen, Xinmeng
    Liu, Jiying
    Zhu, Jubo
    2017 2ND INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC 2017), 2017, : 516 - 520
  • [24] Hyperspectral imaging coupled with multivariate analysis and artificial intelligence to the classification of maize kernels
    Alimohammadi, Fariba
    Rasekh, Mansour
    Sayyah, Amir Hosein Afkari
    Abbaspour-Gilandeh, Yousef
    Karami, Hamed
    Sharabiani, Vali Rasooli
    Fioravanti, Ambra
    Gancarz, Marek
    Findura, Pavol
    Kwasniewski, Dariusz
    INTERNATIONAL AGROPHYSICS, 2022, 36 (02) : 83 - 91
  • [25] Hyperspectral Imaging Aiding Artificial Intelligence: A Reliable Approach for Food Qualification and Safety
    Nikzadfar, Mehrad
    Rashvand, Mahdi
    Zhang, Hongwei
    Shenfield, Alex
    Genovese, Francesco
    Altieri, Giuseppe
    Matera, Attilio
    Tornese, Iolanda
    Laveglia, Sabina
    Paterna, Giuliana
    Lovallo, Carmela
    Mammadov, Orkhan
    Aykanat, Burcu
    Di Renzo, Giovanni Carlo
    APPLIED SCIENCES-BASEL, 2024, 14 (21):
  • [26] A Characterization of the Utility of Using Artificial Intelligence to Test Two Artificial Intelligence Systems
    Straub, Jeremy
    Huber, Justin
    COMPUTERS, 2013, 2 (02) : 67 - 87
  • [27] Deep brain stimulation Intraoperative imaging: False errors in the era of artificial intelligence
    Paramanandam, V.
    Alugolu, R.
    Sukumaran, A.
    Kandadai, R.
    Borgohain, R.
    MOVEMENT DISORDERS, 2024, 39 : S517 - S518
  • [28] Artificial intelligence for renal cancer:From imaging to histology and beyond
    KarlFriedrich Kowalewski
    Luisa Egen
    Chanel EFischetti
    Stefano Puliatti
    Gomez Rivas Juan
    Mark Taratkin
    Rivero Belenchon Ines
    Marie Angela Sidoti Abate
    Julia Mhlbauer
    Frederik Wessels
    Enrico Checcucci
    Giovanni Cacciamani
    the Young Academic Urologists YAUUrotechnologyGroup
    Asian Journal of Urology, 2022, (03) : 243 - 252
  • [29] Artificial intelligence for renal cancer: From imaging to histology and beyond
    Kowalewski, Karl-Friedrich
    Egen, Luisa
    Fischetti, Chanel E.
    Puliatti, Stefano
    Rivas Juan, Gomez
    Taratkin, Mark
    Belenchon Ines, Rivero
    Abate, Marie Angela Sidoti
    Muehlbauer, Julia
    Wessels, Frederik
    Checcucci, Enrico
    Cacciamani, Giovanni
    ASIAN JOURNAL OF UROLOGY, 2022, 9 (03) : 243 - 252
  • [30] Characterization of artificial intelligence performance for lesion detection using synthetic lesions in PET imaging
    de Bourbon, Quinn
    Ahamed, Shadab
    Blanc-Durand, Paul
    Rahmim, Arman
    Klein, Ran
    MEDICAL PHYSICS, 2025,