Spectral characterization of intraoperative renal perfusion using hyperspectral imaging and artificial intelligence

被引:3
|
作者
Studier-Fischer, A. [1 ,2 ,3 ,4 ]
Bressan, M. [1 ]
Qasim, A. bin [5 ,6 ,7 ,8 ]
Oezdemir, B. [1 ,3 ,4 ]
Sellner, J. [5 ,6 ,7 ,8 ,9 ]
Seidlitz, S. [5 ,6 ,7 ,8 ,9 ]
Haney, C. M. [2 ,3 ,4 ]
Egen, L. [2 ,3 ,4 ]
Michel, M. [2 ,3 ,4 ]
Dietrich, M. [10 ]
Salg, G. A. [1 ]
Billmann, F. [1 ]
Nienhueser, H. [1 ]
Hackert, T. [11 ]
Mueller, B. P. [12 ]
Maier-Hein, L. [5 ,6 ,7 ,8 ,9 ]
Nickel, F. [1 ,6 ,11 ]
Kowalewski, K. F. [2 ,3 ,4 ]
机构
[1] Heidelberg Univ Hosp, Dept Gen Visceral & Transplantat Surg, Heidelberg, Germany
[2] Heidelberg Univ, Univ Med Ctr Mannheim, Med Fac, Dept Urol & Urosurgery, Mannheim, Germany
[3] German Canc Res Ctr DKFZ Heidelberg, Div Intelligent Syst & Robot Urol ISRU, Heidelberg, Germany
[4] Univ Med Ctr Mannheim, DKFZ Hector Canc Inst, Mannheim, Germany
[5] German Canc Res Ctr DKFZ Heidelberg, Div Intelligent Med Syst, Heidelberg, Germany
[6] Helmholtz Informat & Data Sci Sch Hlth, HIDSS4Hlth, HIDSS4Health, Heidelberg, Germany
[7] Natl Ctr Tumor Dis NCT Heidelberg, DKFZ, Heidelberg, Germany
[8] Heidelberg Univ Hosp, Heidelberg, Germany
[9] Heidelberg Univ, Fac Math & Comp Sci, Heidelberg, Germany
[10] Heidelberg Univ Hosp, Dept Anesthesiol, Heidelberg, Germany
[11] Univ Med Ctr Hamburg Eppendorf, Dept Gen Visceral & Thorac Surg, Hamburg, Germany
[12] Univ Digest Healthcare Ctr Basel, Dept Digest Surg, Basel, Switzerland
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
基金
欧洲研究理事会;
关键词
Hyperspectral imaging; Renal perfusion; Renal malperfusion; Translational research; Porcine model; Machine learning; Surgery; Surgical data science; SURGICAL-MANAGEMENT; QUALITY;
D O I
10.1038/s41598-024-68280-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurate intraoperative assessment of organ perfusion is a pivotal determinant in preserving organ function e.g. during kidney surgery including partial nephrectomy or kidney transplantation. Hyperspectral imaging (HSI) has great potential to objectively describe and quantify this perfusion as opposed to conventional surrogate techniques such as ultrasound flowmeter, indocyanine green or the subjective eye of the surgeon. An established live porcine model under general anesthesia received median laparotomy and renal mobilization. Different scenarios that were measured using HSI were (1) complete, (2) gradual and (3) partial malperfusion. The differences in spectral reflectance as well as HSI oxygenation (StO2) between different perfusion states were compelling and as high as 56.9% with 70.3% (+/- 11.0%) for "physiological" vs. 13.4% (+/- 3.1%) for "venous congestion". A machine learning (ML) algorithm was able to distinguish between these perfusion states with a balanced prediction accuracy of 97.8%. Data from this porcine study including 1300 recordings across 57 individuals was compared to a human dataset of 104 recordings across 17 individuals suggesting clinical transferability. Therefore, HSI is a highly promising tool for intraoperative microvascular evaluation of perfusion states with great advantages over existing surrogate techniques. Clinical trials are required to prove patient benefit.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Intraoperative using of artificial intelligence and hyperspectral imaging in colorectal surgeries
    Jansen-Winkeln, Boris
    Koehler, Hannes
    Pfahl, Annekatrin
    Mehdorn, Matthias
    Gockel, Ines
    Chalopin, Claire
    Maktabi, Marianne
    COLOPROCTOLOGY, 2022, 44 (02) : 104 - 109
  • [2] Intraoperative Determination of Bronchus Stump and Anastomosis Perfusion with Hyperspectral Imaging
    Ellebrecht, David B.
    Kugler, Christian
    SURGICAL INNOVATION, 2023, 30 (03) : 314 - 323
  • [3] Spectral characterization of fouled railroad ballast using hyperspectral imaging
    Ichi, Eberechi
    Dorafshan, Sattar
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 394
  • [4] Artificial Intelligence tools for the evaluation of myocardial perfusion imaging
    de Souza-Filho, Erito Marques
    Fernandes, Fernando de Amorim
    Seixas, Flavio Luiz
    Gismondi, Ronaldo Altenburg
    Mesquita, Claudio
    JOURNAL OF NUCLEAR MEDICINE, 2019, 60
  • [5] Objective, real-time, intraoperative assessment of renal perfusion using infrared imaging
    Gorbach, A
    Simonton, D
    Hale, DA
    Swanson, SJ
    Kirk, AD
    AMERICAN JOURNAL OF TRANSPLANTATION, 2003, 3 (08) : 988 - 993
  • [6] Intraoperative Anwendung künstlicher Intelligenz und neuer hyperspektraler Bildgebungsverfahren in der kolorektalen ChirurgieIntraoperative using of artificial intelligence and hyperspectral imaging in colorectal surgeries
    Boris Jansen-Winkeln
    Hannes Köhler
    Annekatrin Pfahl
    Matthias Mehdorn
    Ines Gockel
    Claire Chalopin
    Marianne Maktabi
    coloproctology, 2022, 44 (2) : 104 - 109
  • [7] Intraoperative Guidance Using Hyperspectral Imaging: A Review for Surgeons
    Barberio, Manuel
    Benedicenti, Sara
    Pizzicannella, Margherita
    Felli, Eric
    Collins, Toby
    Jansen-Winkeln, Boris
    Marescaux, Jacques
    Viola, Massimo Giuseppe
    Diana, Michele
    DIAGNOSTICS, 2021, 11 (11)
  • [8] Rapid species discrimination of similar insects using hyperspectral imaging and lightweight edge artificial intelligence
    Wang, Xuquan
    Ma, Zhiyuan
    Xing, Yujie
    Peng, Tianfan
    Dun, Xiong
    He, Zhuqing
    Zhang, Jian
    Cheng, Xinbin
    ROYAL SOCIETY OPEN SCIENCE, 2024, 11 (07):
  • [9] Radiomics and Artificial Intelligence for Renal Mass Characterization
    Lubner, Meghan G.
    RADIOLOGIC CLINICS OF NORTH AMERICA, 2020, 58 (05) : 995 - +
  • [10] Artificial Intelligence for Myocardial Perfusion Imaging Compared with Expert Interpretation
    Nakajima, K.
    Kiso, K.
    Kudo, T.
    Taniguchi, Y.
    Matsuo, S.
    Nakagawa, M.
    Nokata, T.
    Hida, S.
    Tanaka, H.
    Sarai, M.
    Yokoyoma, K.
    Momose, M.
    Okuda, K.
    Edenbrandt, L.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2017, 44 : S337 - S338