Parameter estimation from quantum-jump data using neural networks

被引:1
|
作者
Rinaldi, Enrico [1 ,2 ,3 ,4 ]
Lastre, Manuel Gonzalez [5 ,6 ,7 ]
Herreros, Sergio Garcia [5 ,6 ,7 ]
Ahmed, Shahnawaz [8 ]
Khanahmadi, Maryam [8 ]
Nori, Franco [3 ,4 ,9 ]
Munoz, Carlos Sanchez [5 ,6 ,7 ,10 ]
机构
[1] Quantinuum KK, Otemachi Financial City Grand Cube, 3F,1-9-2 Otemachi,Chiyoda ku, Tokyo, Japan
[2] Interdisciplinary Theoret & Math Sci iTHEMS Progra, RIKEN, Wako, Saitama 3510198, Japan
[3] Ctr Quantum Comp, RIKEN, Wako, Saitama 3510198, Japan
[4] Theoret Quantum Phys Lab, Cluster Pioneering Res, RIKEN, Wako, Saitama 3510198, Japan
[5] Univ Autonomade Madrid, Dept Fis Teor Mat Condensada, Madrid 28049, Spain
[6] Univ Autonomade Madrid, Condensed Matter Phys Ctr IFIMAC, Madrid 28049, Spain
[7] Univ Autonoma Madrid, Inst Nicolas Cabrera, Madrid 28049, Spain
[8] Chalmers Univ Technol, Dept Microtechnol & Nanosci, S-41296 Gothenburg, Sweden
[9] Univ Michigan, Phys Dept, Ann Arbor, MI 48109 USA
[10] Inst Fundamental Phys IFF, CSIC, Calle Serrano 113b, Madrid 28006, Spain
基金
日本科学技术振兴机构;
关键词
quantum metrology; quantum parameter estimation; neural networks; deep learning; quantum jumps; photon counting; !text type='PYTHON']PYTHON[!/text] FRAMEWORK; DYNAMICS; QUTIP;
D O I
10.1088/2058-9565/ad3c68
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an inference method utilizing artificial neural networks for parameter estimation of a quantum probe monitored through a single continuous measurement. Unlike existing approaches focusing on the diffusive signals generated by continuous weak measurements, our method harnesses quantum correlations in discrete photon-counting data characterized by quantum jumps. We benchmark the precision of this method against Bayesian inference, which is optimal in the sense of information retrieval. By using numerical experiments on a two-level quantum system, we demonstrate that our approach can achieve a similar optimal performance as Bayesian inference, while drastically reducing computational costs. Additionally, the method exhibits robustness against the presence of imperfections in both measurement and training data. This approach offers a promising and computationally efficient tool for quantum parameter estimation with photon-counting data, relevant for applications such as quantum sensing or quantum imaging, as well as robust calibration tasks in laboratory-based settings.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] On the Estimation of the SHARP Parameter MEANALP from AIA Images Using Deep Neural Networks
    Benson, B.
    Pan, W. D.
    Prasad, A.
    Gary, G. A.
    Hu, Q.
    [J]. SOLAR PHYSICS, 2021, 296 (11)
  • [22] Parameter estimation via neural networks
    Phillips, NG
    Kogut, A
    [J]. STATISTICAL CHALLENGES IN ASTRONOMY, 2003, : 471 - 473
  • [23] Estimation of Site Ampllification from Geotechnical Array Data Using Neural Networks
    Roten, Daniel
    Olsen, Kim B.
    [J]. BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2021, 111 (04) : 1784 - 1794
  • [24] Iris data classification using quantum neural networks
    Sahni, Vishal
    Patvardhan, C.
    [J]. QUANTUM COMPUTING: BACK ACTION 2006, 2006, 864 : 219 - +
  • [25] Parameter estimation of particle flow model for soils using neural networks
    Li S.
    Wu L.
    Qu F.
    Sun W.
    [J]. Journal of Convergence Information Technology, 2010, 5 (08) : 3
  • [26] Two new techniques for aircraft parameter estimation using neural networks
    Raisinghani, SC
    Ghosh, AK
    Kalra, PK
    [J]. AERONAUTICAL JOURNAL, 1998, 102 (1011): : 25 - 30
  • [27] Two new techniques for aircraft parameter estimation using neural networks
    Indian Inst of Technology, Kanpur, India
    [J]. Aeronaut J, 1011 (25-30):
  • [28] Room Acoustical Parameter Estimation From Room Impulse Responses Using Deep Neural Networks
    Yu, Wangyang
    Kleijn, W. Bastiaan
    [J]. IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2021, 29 : 436 - 447
  • [29] Kinetic parameter estimation from dynamic studies of SPECT/PET using artificial neural networks
    Murase, K
    Mochizuki, T
    Kikuchi, T
    Ikezoe, J
    [J]. CAR '98 - COMPUTER ASSISTED RADIOLOGY AND SURGERY, 1998, 1165 : 865 - 865
  • [30] Determination Jump Monitored Parameter Using a Neural Network
    Klevtsov, Sergei
    [J]. PROCEEDINGS OF 2016 IEEE EAST-WEST DESIGN & TEST SYMPOSIUM (EWDTS), 2016,