Parameter estimation from quantum-jump data using neural networks

被引:1
|
作者
Rinaldi, Enrico [1 ,2 ,3 ,4 ]
Lastre, Manuel Gonzalez [5 ,6 ,7 ]
Herreros, Sergio Garcia [5 ,6 ,7 ]
Ahmed, Shahnawaz [8 ]
Khanahmadi, Maryam [8 ]
Nori, Franco [3 ,4 ,9 ]
Munoz, Carlos Sanchez [5 ,6 ,7 ,10 ]
机构
[1] Quantinuum KK, Otemachi Financial City Grand Cube, 3F,1-9-2 Otemachi,Chiyoda ku, Tokyo, Japan
[2] Interdisciplinary Theoret & Math Sci iTHEMS Progra, RIKEN, Wako, Saitama 3510198, Japan
[3] Ctr Quantum Comp, RIKEN, Wako, Saitama 3510198, Japan
[4] Theoret Quantum Phys Lab, Cluster Pioneering Res, RIKEN, Wako, Saitama 3510198, Japan
[5] Univ Autonomade Madrid, Dept Fis Teor Mat Condensada, Madrid 28049, Spain
[6] Univ Autonomade Madrid, Condensed Matter Phys Ctr IFIMAC, Madrid 28049, Spain
[7] Univ Autonoma Madrid, Inst Nicolas Cabrera, Madrid 28049, Spain
[8] Chalmers Univ Technol, Dept Microtechnol & Nanosci, S-41296 Gothenburg, Sweden
[9] Univ Michigan, Phys Dept, Ann Arbor, MI 48109 USA
[10] Inst Fundamental Phys IFF, CSIC, Calle Serrano 113b, Madrid 28006, Spain
基金
日本科学技术振兴机构;
关键词
quantum metrology; quantum parameter estimation; neural networks; deep learning; quantum jumps; photon counting; !text type='PYTHON']PYTHON[!/text] FRAMEWORK; DYNAMICS; QUTIP;
D O I
10.1088/2058-9565/ad3c68
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an inference method utilizing artificial neural networks for parameter estimation of a quantum probe monitored through a single continuous measurement. Unlike existing approaches focusing on the diffusive signals generated by continuous weak measurements, our method harnesses quantum correlations in discrete photon-counting data characterized by quantum jumps. We benchmark the precision of this method against Bayesian inference, which is optimal in the sense of information retrieval. By using numerical experiments on a two-level quantum system, we demonstrate that our approach can achieve a similar optimal performance as Bayesian inference, while drastically reducing computational costs. Additionally, the method exhibits robustness against the presence of imperfections in both measurement and training data. This approach offers a promising and computationally efficient tool for quantum parameter estimation with photon-counting data, relevant for applications such as quantum sensing or quantum imaging, as well as robust calibration tasks in laboratory-based settings.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Parameter estimation from flight data of an unstable aircraft using neural networks
    [J]. Ghosh, A.K. (akg@iitk.ac.in), 1600, American Inst. Aeronautics and Astronautics Inc. (39):
  • [2] Parameter estimation from flight data of an unstable aircraft using neural networks
    Ghosh, AK
    Raisinghani, SC
    [J]. JOURNAL OF AIRCRAFT, 2002, 39 (05): : 892 - 894
  • [3] Perfusion Parameter Estimation Using Neural Networks and Data Augmentation
    Robben, David
    Suetens, Paul
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT I, 2019, 11383 : 439 - 446
  • [4] Parameter estimation using compensatory neural networks
    M. Sinha
    P. K. Kalra
    K. Kumar
    [J]. Sadhana, 2000, 25 : 193 - 203
  • [5] Wave parameter estimation using neural networks
    Agrawal, JD
    Deo, MC
    [J]. MARINE STRUCTURES, 2004, 17 (07) : 536 - 550
  • [6] Parameter estimation using compensatory neural networks
    Sinha, M
    Kalra, PK
    Kumar, K
    [J]. SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2000, 25 (2): : 193 - 203
  • [7] Parameter estimation of UAV from flight data using neural network
    Dhayalan, R.
    Saderla, Subrahmanyam
    Ghosh, Ajoy Kanti
    [J]. AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2018, 90 (02): : 302 - 311
  • [8] Estimation of quantum channels using neural networks
    Ma, Hailan
    Sun, Zhenhong
    Xiao, Shuixin
    Dong, Daoyi
    Petersen, Ian R.
    [J]. 2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 1195 - 1200
  • [9] Fast cosmological parameter estimation using neural networks
    Auld, T.
    Bridges, M.
    Hobson, M. P.
    Gull, S. F.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2007, 376 (01) : L11 - L15
  • [10] Parameter estimation of an aeroelastic aircraft using neural networks
    S. C. Raisinghani
    A. K. Ghosh
    [J]. Sadhana, 2000, 25 : 181 - 191