Hierarchical Point-based Active Learning for Semi-supervised Point Cloud Semantic Segmentation

被引:3
|
作者
Xu, Zongyi [1 ]
Yuan, Bo [1 ]
Zhao, Shanshan [2 ]
Zhang, Qianni [3 ]
Gao, Xinbo [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Chongqing, Peoples R China
[2] JD Explore Acad, Beijing, Peoples R China
[3] Queen Mary Univ London, London, England
关键词
D O I
10.1109/ICCV51070.2023.01659
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Impressive performance on point cloud semantic segmentation has been achieved by fully-supervised methods with large amounts of labelled data. As it is labourintensive to acquire large-scale point cloud data with pointwise labels, many attempts have been made to explore learning 3D point cloud segmentation with limited annotations. Active learning is one of the effective strategies to achieve this purpose but is still under-explored. The most recent methods of this kind measure the uncertainty of each pre-divided region for manual labelling but they suffer from redundant information and require additional efforts for region division. This paper aims at addressing this issue by developing a hierarchical point-based active learning strategy. Specifically, we measure the uncertainty for each point by a hierarchical minimum margin uncertainty module which considers the contextual information at multiple levels. Then, a feature-distance suppression strategy is designed to select important and representative points for manual labelling. Besides, to better exploit the unlabelled data, we build a semi-supervised segmentation framework based on our active strategy. Extensive experiments on the S3DIS and ScanNetV2 datasets demonstrate that the proposed framework achieves 96.5% and 100% performance of fully-supervised baseline with only 0.07% and 0.1% training data, respectively, outperforming the state-of-the-art weakly-supervised and active learning methods. The code will be available at https://github.com/SmiletoE/HPAL.
引用
收藏
页码:18052 / 18062
页数:11
相关论文
共 50 条
  • [1] Guided Point Contrastive Learning for Semi-supervised Point Cloud Semantic Segmentation
    Jiang, Li
    Shi, Shaoshuai
    Tian, Zhuotao
    Lai, Xin
    Liu, Shu
    Fu, Chi-Wing
    Jia, Jiaya
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 6403 - 6412
  • [2] Semantic Segmentation with Active Semi-Supervised Learning
    Rangnekar, Aneesh
    Kanan, Christopher
    Hoffman, Matthew
    [J]. 2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 5955 - 5966
  • [3] SemiGMMPoint: Semi-supervised point cloud segmentation based on Gaussian mixture models
    Zhuang, Xianwei
    Wang, Hualiang
    He, Xiaoxuan
    Fu, Siming
    Hu, Haoji
    [J]. Pattern Recognition, 2025, 158
  • [4] Point-Based Weakly Supervised Deep Learning for Semantic Segmentation of Remote Sensing Images
    Zhao, Yuanhao
    Sun, Genyun
    Ling, Ziyan
    Zhang, Aizhu
    Jia, Xiuping
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [5] A point-based deep learning network for semantic segmentation of MLS point clouds
    Han, Xu
    Dong, Zhen
    Yang, Bisheng
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 175 : 199 - 214
  • [6] SSPC-Net: Semi-supervised Semantic 3D Point Cloud Segmentation Network
    Cheng, Mingmei
    Hui, Le
    Xie, Jin
    Yang, Jian
    [J]. THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 1140 - 1147
  • [7] Class-imbalanced semi-supervised learning for large-scale point cloud semantic segmentation via decoupling optimization
    Li, Mengtian
    Lin, Shaohui
    Wang, Zihan
    Shen, Yunhang
    Zhang, Baochang
    Ma, Lizhuang
    [J]. PATTERN RECOGNITION, 2024, 156
  • [8] Semi-supervised learning-based point cloud network for segmentation of 3D tunnel scenes
    Ji, Ankang
    Zhou, Yunxiang
    Zhang, Limao
    Tiong, Robert L. K.
    Xue, Xiaolong
    [J]. AUTOMATION IN CONSTRUCTION, 2023, 146
  • [9] Active Learning for Improved Semi-Supervised Semantic Segmentation in Satellite Images
    Desai, Shasvat
    Ghose, Debasmita
    [J]. 2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 1485 - 1495
  • [10] Semi-supervised Change Point Detection Using Active Learning
    De Brabandere, Arne
    Cao, Zhenxiang
    De Vos, Maarten
    Bertrand, Alexander
    Davis, Jesse
    [J]. DISCOVERY SCIENCE (DS 2022), 2022, 13601 : 74 - 88