Dual-Domain Aligned Deep Hierarchical Matrix Factorization Method for Micro-Video Multi-Label Classification

被引:2
|
作者
Fan, Fugui [1 ]
Su, Yuting [1 ]
Nie, Liqiang [2 ]
Jing, Peiguang [1 ]
Hong, Daozheng [1 ]
Liu, Yu [3 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
[2] Harbin Inst Technol, Sch Comp Sci & Technol, Shenzhen 518055, Peoples R China
[3] Tianjin Univ, Sch Microelect, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Semantics; Correlation; Visualization; Task analysis; Matrix decomposition; Estimation; Training; Micro-video; multi-label classification; semantic alignment; deep matrix factorization;
D O I
10.1109/TMM.2023.3301224
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, with the growing popularity of micro-videos, multi-label learning has attracted increasing attention due to its potential commercial value in different scenarios. However, existing methods place more emphasis on the alignment between explicit semantics and visual features, while neglecting the exploration of interactions at fine-grained semantic levels. To address this problem, we propose a novel dual-domain aligned deep hierarchical matrix factorization (DADHMF) method for micro-video multi-label classification. Specifically, we construct a dual-stream deep matrix factorization framework to explore implicit hierarchical semantics and corresponding intrinsic feature representations in top-down and bottom-up ways, respectively. On this basis, we leverage the intralayer alignment strategy to narrow the semantic gap between label and instance domains by introducing adaptive semantic-aware embeddings. Moreover, we further utilize the inverse covariance estimation module to automatically capture latent semantic correlations, and project the structural information into the semantic-aware embeddings to ensure the stability of the intralayer alignment. Extensive experiments on two available micro-video multi-label datasets demonstrate that our proposed method outperforms the state-of-the-art methods.
引用
收藏
页码:2598 / 2607
页数:10
相关论文
共 47 条
  • [11] Multimodal Progressive Modulation Network for Micro-video Multi-label Classification
    Jing P.
    Zhao X.
    Fan F.
    Yang F.
    Li Y.
    Su Y.
    IEEE Transactions on Multimedia, 2024, 26 : 1 - 10
  • [12] Deep Multi-Modal Hashing With Semantic Enhancement for Multi-Label Micro-Video Retrieval
    Jing, Peiguang
    Sun, Haoyi
    Nie, Liqiang
    Li, Yun
    Su, Yuting
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (10) : 5080 - 5091
  • [13] Context-aware focal alignment network for micro-video multi-label classification
    Bin Yuan
    Weiheng Yao
    Peiguang Jing
    Jing Zhang
    Kim Fung Tsang
    Shuqiang Wang
    Pattern Analysis and Applications, 2024, 27 (4)
  • [14] A Multimodal Aggregation Network With Serial Self-Attention Mechanism for Micro-Video Multi-Label Classification
    Lu, Wei
    Lin, Jiaxin
    Jing, Peiguang
    Su, Yuting
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 60 - 64
  • [15] A deep neural network based hierarchical multi-label classification method
    Feng, Shou
    Zhao, Chunhui
    Fu, Ping
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2020, 91 (02):
  • [16] Deep neural network for hierarchical extreme multi-label text classification
    Gargiulo, Francesco
    Silvestri, Stefano
    Ciampi, Mario
    De Pietro, Giuseppe
    APPLIED SOFT COMPUTING, 2019, 79 : 125 - 138
  • [17] Dual Layer Voting Method for Efficient Multi-label Classification
    Madjarov, Gjorgji
    Gjorgjevikj, Dejan
    Dzeroski, Saso
    PATTERN RECOGNITION AND IMAGE ANALYSIS: 5TH IBERIAN CONFERENCE, IBPRIA 2011, 2011, 6669 : 232 - 239
  • [18] Hierarchical multi-label taxonomic classification of carbonate skeletal grains with deep learning
    Ho, Madison
    Idgunji, Sidhant
    Payne, Jonathan L.
    Koeshidayatullah, Ardiansyah
    SEDIMENTARY GEOLOGY, 2023, 443
  • [19] MultiPep: a hierarchical deep learning approach for multi-label classification of peptide bioactivities
    Gronning, Alexander G. B.
    Kacprowski, Tim
    Scheele, Camilla
    BIOLOGY METHODS & PROTOCOLS, 2021, 6 (01): : 1 - 16
  • [20] Deep Hierarchical Multi-label Classification of Chest X-ray Images
    Chen, Haomin
    Miao, Shun
    Xu, Daguang
    Hager, Gregory D.
    Harrison, Adam P.
    INTERNATIONAL CONFERENCE ON MEDICAL IMAGING WITH DEEP LEARNING, VOL 102, 2019, 102 : 109 - 120