Dual-Domain Aligned Deep Hierarchical Matrix Factorization Method for Micro-Video Multi-Label Classification

被引:2
|
作者
Fan, Fugui [1 ]
Su, Yuting [1 ]
Nie, Liqiang [2 ]
Jing, Peiguang [1 ]
Hong, Daozheng [1 ]
Liu, Yu [3 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
[2] Harbin Inst Technol, Sch Comp Sci & Technol, Shenzhen 518055, Peoples R China
[3] Tianjin Univ, Sch Microelect, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Semantics; Correlation; Visualization; Task analysis; Matrix decomposition; Estimation; Training; Micro-video; multi-label classification; semantic alignment; deep matrix factorization;
D O I
10.1109/TMM.2023.3301224
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, with the growing popularity of micro-videos, multi-label learning has attracted increasing attention due to its potential commercial value in different scenarios. However, existing methods place more emphasis on the alignment between explicit semantics and visual features, while neglecting the exploration of interactions at fine-grained semantic levels. To address this problem, we propose a novel dual-domain aligned deep hierarchical matrix factorization (DADHMF) method for micro-video multi-label classification. Specifically, we construct a dual-stream deep matrix factorization framework to explore implicit hierarchical semantics and corresponding intrinsic feature representations in top-down and bottom-up ways, respectively. On this basis, we leverage the intralayer alignment strategy to narrow the semantic gap between label and instance domains by introducing adaptive semantic-aware embeddings. Moreover, we further utilize the inverse covariance estimation module to automatically capture latent semantic correlations, and project the structural information into the semantic-aware embeddings to ensure the stability of the intralayer alignment. Extensive experiments on two available micro-video multi-label datasets demonstrate that our proposed method outperforms the state-of-the-art methods.
引用
收藏
页码:2598 / 2607
页数:10
相关论文
共 47 条
  • [1] Multimodal deep hierarchical semantic-aligned matrix factorization method for micro-video multi-label classification
    Fan, Fugui
    Su, Yuting
    Liu, Yun
    Jing, Peiguang
    Qu, Kaihua
    Liu, Yu
    INFORMATION PROCESSING & MANAGEMENT, 2024, 61 (05)
  • [2] Deep Matrix Factorization With Complementary Semantic Aggregation for Micro-Video Multi-Label Classification
    Jing, Peiguang
    Liu, Xiaoyu
    Wang, Xuehui
    Su, Yuting
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 1685 - 1689
  • [3] A deep low-rank semantic factorization method for micro-video multi-label classification
    Fan, Fugui
    Su, Yuting
    Liu, Yun
    Jing, Peiguang
    Qu, Kaihua
    MULTIMEDIA SYSTEMS, 2024, 30 (04)
  • [4] Low-Rank Regularized Deep Collaborative Matrix Factorization for Micro-Video Multi-Label Classification
    Su, Yuting
    Hong, Daozheng
    Li, Yang
    Jing, Peiguang
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 740 - 744
  • [5] SADCMF: Self-Attentive Deep Consistent Matrix Factorization for Micro-Video Multi-Label Classification
    Fan F.
    Jing P.
    Nie L.
    Gu H.
    Su Y.
    IEEE Transactions on Multimedia, 2024, 26 : 1 - 11
  • [6] Deep low-rank matrix factorization with latent correlation estimation for micro-video multi-label classification
    Su, Yuting
    Xu, Junyu
    Hong, Daozheng
    Fan, Fugui
    Zhang, Jing
    Jing, Peiguang
    INFORMATION SCIENCES, 2021, 575 : 587 - 598
  • [7] Learning Dual Low-Rank Representation for Multi-Label Micro-Video Classification
    Lu, Wei
    Li, Desheng
    Nie, Liqiang
    Jing, Peiguang
    Su, Yuting
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 77 - 89
  • [8] Research on Micro-video Multi-Label Classification Based on Deep Multimodal Association Learning
    Li, Yun
    Lu, Zhixiang
    Liu, Shuyi
    Wang, Su
    Lü, Zimin
    Jing, Peiguang
    Data Analysis and Knowledge Discovery, 2024, 8 (07) : 77 - 88
  • [9] Multimodal Attentive Representation Learning for Micro-video Multi-label Classification
    Jing, Peiguang
    Liu, Xianyi
    Zhang, Lijuan
    Li, Yun
    Liu, Yu
    Su, Yuting
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (06)
  • [10] Micro-video multi-label classification method based on multi-modal feature encoding
    Jing P.
    Li Y.
    Su Y.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2022, 49 (04): : 109 - 117