Fast imaging of millimeter-scale areas with beam deflection transmission electron microscopy

被引:1
|
作者
Zheng, Zhihao [1 ]
Own, Christopher S. [2 ]
Wanner, Adrian A. [1 ,3 ]
Koene, Randal A. [2 ]
Hammerschmith, Eric W. [1 ]
Silversmith, William M. [1 ]
Kemnitz, Nico [1 ]
Lu, Ran [1 ]
Tank, David W. [1 ]
Seung, H. Sebastian [1 ]
机构
[1] Princeton Univ, Princeton Neurosci Inst, Princeton, NJ 08544 USA
[2] Voxa, Seattle, WA USA
[3] Paul Scherrer Inst, Villigen, Switzerland
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
HIGH-RESOLUTION; RECONSTRUCTION; TOMOGRAPHY; ANATOMY; NETWORK; SYSTEM;
D O I
10.1038/s41467-024-50846-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Serial section transmission electron microscopy (TEM) has proven to be one of the leading methods for millimeter-scale 3D imaging of brain tissues at nanoscale resolution. It is important to further improve imaging efficiency to acquire larger and more brain volumes. We report here a threefold increase in the speed of TEM by using a beam deflecting mechanism to enable highly efficient acquisition of multiple image tiles (nine) for each motion of the mechanical stage. For millimeter-scale areas, the duty cycle of imaging doubles to more than 30%, yielding a net average imaging rate of 0.3 gigapixels per second. If fully utilized, an array of four beam deflection TEMs should be capable of imaging a dataset of cubic millimeter scale in five weeks. The authors report a tripling in the speed of serial section transmission electron microscopy using a beam deflecting mechanism. This innovation enables the acquisition of multiple image tiles for each stage motion, yielding a net imaging rate of 0.3 gigapixels per second for millimeter-scale areas.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] A Millimeter-Scale Micro Crawling Robot with Fast-Moving Driven by a Miniature Electromagnetic Linear Actuator
    Zhu, Kaiyun
    Li, Haiwang
    Zhao, Weizhi
    Zhang, Xiao
    Li, Shijia
    Zhang, Kaiwen
    Xu, Tiantong
    ADVANCED INTELLIGENT SYSTEMS, 2024, 6 (08)
  • [32] DESIGN OF FAST DEFLECTION COILS FOR AN ELECTRON-BEAM MICROFABRICATION SYSTEM
    AMBOSS, K
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY, 1975, 12 (06): : 1152 - 1155
  • [33] Weak beam transmission electron microscopy imaging of superdislocations in ordered Ni3Al
    Baluc, N
    Schaublin, R
    PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1996, 74 (01): : 113 - 136
  • [34] Weak beam transmission electron microscopy imaging of superdislocations in ordered Ni3Al
    Dept. of Mat. Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, United Kingdom
    不详
    Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech. Prop., 1 (113-136):
  • [35] Fast Beam Deflection and Beam Quality- Keys to Economic High Quality Electron Beam Applications
    Uwe Clau
    James Bull
    稀有金属材料与工程, 2011, 40(S4) (S4) : 90 - 94
  • [36] Fast Beam Deflection and Beam Quality- Keys to Economic High Quality Electron Beam Applications
    Clauss, Uwe
    Bull, James
    RARE METAL MATERIALS AND ENGINEERING, 2011, 40 : 90 - 94
  • [37] All-optical control of electron self-injection in millimeter-scale, tapered dense plasmas
    Kalmykov, S. Y.
    Davoine, X.
    Shadwick, B. A.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2014, 740 : 266 - 272
  • [38] Convergent beam electron diffraction in scanning transmission electron microscopy of InGaAsP
    SchulzeKraasch, F
    Lakner, H
    EUROPEAN JOURNAL OF CELL BIOLOGY, 1997, 74 : 49 - 49
  • [39] Simplifying Electron Beam Channeling in Scanning Transmission Electron Microscopy (STEM)
    Wu, Ryan J.
    Mittal, Anudha
    Odlyzko, Michael L.
    Mkhoyan, K. Andre
    MICROSCOPY AND MICROANALYSIS, 2017, 23 (04) : 794 - 808
  • [40] Molecular-scale imaging of unstained deoxyribonucleic acid fibers by phase transmission electron microscopy
    Takai, Yoshizo
    Nomaguchi, Tsunenori
    Matsushita, Shuhei
    Kimura, Yoshihide
    APPLIED PHYSICS LETTERS, 2006, 89 (13)