In the current investigation, the novelty lies in the formulation of a novel four-node rectangular finite element with six degrees of freedom per node using the strain approach and first-order shear deformation theory, therefore, this is the first article to use this approach to analyze the static, free vibration, and buckling behaviors of functionally graded. The properties of FGM vary continuously through the thickness direction according to the volume fraction of constituents defined by a simple power law function. The notion of a neutral surface is presented to prevent membrane bending coupling. The displacement functions of the suggested element which possess higher-order expressions, is based on assumed functions of strain that satisfy both rigid body modes and compatibility equations. The performance of the developed element is verified and compared with the published results in the literature and excellent agreement is observed. The influence of the geometrical, material properties, and loading types with different boundary conditions on the bending, free vibration, and buckling analysis of FGM plate are also studied and discussed for the first time using the strain-based finite element formulation.