Self-assembly of porous curly graphene film as an efficient gas diffusion layer for high-performance Zn-air batteries

被引:2
|
作者
Han, Tian [1 ]
Sun, Hui [1 ]
Hu, Jian [1 ]
Sun, Ningkang [1 ]
Li, Yuan [1 ,2 ]
Chen, Jie [1 ,3 ]
Chen, Mingming [1 ]
Cao, Dawei [1 ]
机构
[1] Jiangsu Univ, Sch Phys & Elect Engn, Zhenjiang 212013, Peoples R China
[2] Wenzhou Univ, Inst Laser & Optoelect Intelligent Mfg, Wenzhou 325035, Peoples R China
[3] Sinosteel Nanjing Adv Mat Res Inst Co Ltd, Sinosteel New Mat Co Ltd, Maanshan 243000, Peoples R China
关键词
Porous material; Graphene films; Gas diffusion layer; Zn-air batteries; High power density; CO-DOPED GRAPHENE; ELECTROCATALYST; TRANSPORT; ORR;
D O I
10.1016/j.carbon.2024.119025
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To enhance the performance of Zn -air batteries (ZABs), it is essential to improve the performance of all components at the cathode, rather than solely focusing on the activity of the electrocatalyst. For example, the intrinsic ORR activity of the widely used Pt/C electrocatalyst remains the best in a comprehensive evaluation, but its performance in ZAB is limited. In this study, we proposed that the discrepancies between electrocatalysts and ZAB cathodes were attributed to the deficiency of the gas diffusion layer (GDL). Subsequently, we developed a facile, energy-saving, and eco-friendly method to fabricate a porous curly graphene film (PCGF) GDL. In comparison with traditional GDL, the PCGF GDL exhibits curly aggregation, excellent conductivity, and porous microstructure. These features enhance electrocatalyst dispersion, charge collection, and gas transport, leading to high ZAB performance. Specifically, Pt/C@PCGF ZAB shows outstanding performance with a peak power density of 329 mW cm -2 , high round -trip efficiency of 72% and 62% at 2 and 10 mA cm -2 , and the round -trip efficiency can maintain 60% after 250 cycles at 10 mA cm -2 . These results significantly outperform those achieved with traditional GDL. Furthermore, the PCGF GDL can be universally used for various electrocatalysts, including precious metals, metal compounds, and carbon materials.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Biphasic Nanoalloys-Based Trifunctional Monolith for High-Performance Flexible Zn-Air Batteries and Self-Driven Water Splitting
    Yang, Xuhuan
    Mao, Haoning
    Zhou, Zining
    Li, Keer
    Li, Chen
    Ye, Qiong
    Liu, Boping
    Fang, Yueping
    Cai, Xin
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (38)
  • [32] A dual-template strategy to engineer hierarchically porous Fe-N-C electrocatalysts for the high-performance cathodes of Zn-air batteries†
    Wang, Dan
    Xu, Hao
    Yang, Peixia
    Xiao, Lihui
    Du, Lei
    Lu, Xiangyu
    Li, Ruopeng
    Zhang, Jinqiu
    An, Maozhong
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (15) : 9761 - 9770
  • [33] Self-assembly of free-standing hybrid film based on graphene and zinc oxide nanoflakes for high-performance supercapacitors
    Du, Xiangxiang
    Wang, Shan
    Liu, Yingchun
    Lu, Maoping
    Wu, Kun
    Lu, Mangeng
    JOURNAL OF SOLID STATE CHEMISTRY, 2019, 277 : 441 - 447
  • [34] Vanadium Nitride Supported on N-Doped Carbon as High-Performance ORR Catalysts for Zn-Air Batteries
    Fu, Yidan
    Han, Lina
    Zheng, Pengfei
    Peng, Xianhui
    Xian, Xianglan
    Liu, Jinglin
    Zeng, Xiaoyuan
    Dong, Peng
    Xiao, Jie
    Zhang, Yingjie
    CATALYSTS, 2022, 12 (08)
  • [35] Advanced design strategies for multi-dimensional structured carbon materials for high-performance Zn-air batteries
    Ying, Jia-Ping
    Zheng, Dong
    Meng, Shi-Bo
    Yin, Rui-Lian
    Dai, Xiao-Jing
    Feng, Jin-Xiu
    Wu, Fang-Fang
    Shi, Wen-Hui
    Cao, Xie-Hong
    NEW CARBON MATERIALS, 2022, 37 (04) : 641 - 655
  • [36] Three-Dimensional Fe Single-Atom Catalyst for High-Performance Cathode of Zn-Air Batteries
    Jiao, Yuying
    Gu, Xiaokang
    Zhai, Pengbo
    Wei, Yi
    Liu, Wei
    Chen, Qian
    Yang, Zhilin
    Zuo, Jinghan
    Wang, Lei
    Xu, Tengfei
    Gong, Yongji
    NANO LETTERS, 2022, 22 (18) : 7386 - 7393
  • [37] Photothermal effect enables markedly enhanced oxygen reduction and evolution activities for high-performance Zn-air batteries
    Zhang, Xiaoyan
    Pan, Shuang
    Song, Huanhuan
    Guo, Wengai
    Gu, Fan
    Yan, Chengzhan
    Jin, Huile
    Zhang, Lijie
    Chen, Yihuang
    Wang, Shun
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (35) : 19734 - 19740
  • [38] Unravelling the Tip Effect of Oxygen Catalysis in Integrated Cathode for High-Performance Flexible/Wearable Zn-Air Batteries
    Shen, Yirun
    Mao, Haoning
    Li, Chen
    Li, Keer
    Liu, Yi
    Liao, Jihai
    Zhang, Shengsen
    Fang, Yueping
    Cai, Xin
    ADVANCED FIBER MATERIALS, 2024, 6 (05) : 1470 - 1482
  • [39] In situ self-assembly of pulp microfibers and nanofibers into a transparent, high-performance and degradable film
    Guo, Jianrong
    He, Junhui
    Zhang, Shuyu
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 277
  • [40] Layer-by-layer self-assembly of graphene-like Co3O4 nanosheet/graphene hybrids: Towards high-performance anode materials for lithium-ion batteries
    Yang, Qian
    Wu, Jun
    Huang, Kai
    Lei, Ming
    Wang, Wenjun
    Tang, Shasha
    Lu, Peijie
    Lu, Yakun
    Liu, Jun
    Journal of Alloys and Compounds, 2016, 667 : 29 - 35