An On-Chip Trainable Neuron Circuit for SFQ-Based Spiking Neural Networks

被引:0
|
作者
Ucpinar, Beyza Zeynep [1 ]
Karamuftuoglu, Mustafa Altay [1 ]
Razmkhah, Sasan [1 ]
Pedram, Massoud [1 ]
机构
[1] Univ Southern Calif, Ming Hsieh Dept Elect & Comp Engn, Los Angeles, CA 90007 USA
基金
美国国家科学基金会;
关键词
Neurons; Biological neural networks; Training; Superconductivity; System-on-chip; Clocks; Simulation; Adjustable neuron; on-chip training; SFQ; spiking neural network;
D O I
10.1109/TASC.2024.3359164
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present an on-chip trainable neuron circuit. Our proposed circuit aims at bio-inspired spike-based time-dependent data computation for training spiking neural networks (SNN). The thresholds of neurons can be increased or decreased depending on the desired application-specific spike generation rate. This mechanism is scalable and provides us with a flexible circuit structure design. We simulated the trainable neuron structure under different operating scenarios with thermal noise included. The circuits are designed and optimized for the MIT LL SFQ5ee fabrication process. For a 16-input neuron with four different threshold values, all of the circuit parameter margins are above 20% (+/- 10%) with a 3G sample per second throughput.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [1] Unsupervised SFQ-Based Spiking Neural Network
    Karamuftuoglu, Mustafa Altay
    Ucpinar, Beyza Zeynep
    Razmkhah, Sasan
    Kamal, Mehdi
    Pedram, Massoud
    [J]. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2024, 34 (03) : 1 - 8
  • [2] On-Chip Trainable Spiking Neural Networks Using Time-To-First-Spike Encoding
    Im, Jiseong
    Kim, Jaehyeon
    Yoo, Ho-Nam
    Baek, Jong-Won
    Kwon, Dongseok
    Oh, Seongbin
    Kim, Jangsaeng
    Hwang, Joon
    Park, Byung-Gook
    Lee, Jong-Ho
    [J]. IEEE ACCESS, 2022, 10 : 31263 - 31272
  • [3] Circuit implementation of on-chip trainable spiking neural network using CMOS based memristive STDP synapses and LIF neurons
    Vohra, Sahibia Kaur
    Thomas, Sherin A.
    Sakare, Mahendra
    Das, Devarshi Mrinal
    [J]. INTEGRATION-THE VLSI JOURNAL, 2024, 95
  • [4] A CMOS-based Neuron Circuit for Spiking Neural Networks with Memristive Synapse
    Liu, Hai-jun
    Li, Ji-wei
    Li, Zhi-wei
    Li, Qing-jiang
    Diao, Jie-tao
    [J]. 2018 INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATIONS AND MECHATRONICS ENGINEERING (CCME 2018), 2018, 332 : 550 - 555
  • [5] An Analog Neuron Circuit for Spiking Convolutional Neural Networks Based on Flash Array
    Xiaofeng, Gu
    Yanhang, Liu
    Zhiguo, Yu
    Xiaoyu, Zhong
    Xuan, Chen
    Yi, Sun
    Hongbing, Pan
    [J]. JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2023, 45 (01) : 116 - 124
  • [6] Design and Implementation of an SFQ-Based Single-Chip FFT Processor
    Ono, Tomohiro
    Suzuki, Hideo
    Yamanashi, Yuki
    Yoshikawa, Nobuyuki
    [J]. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2017, 27 (04)
  • [7] Memory Organization and Structures for On-Chip Learning in Spiking Neural Networks
    Schaefer, Clemens J. S.
    Joshi, Siddharth
    [J]. 2020 IEEE 63RD INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2020, : 599 - 602
  • [8] Architectural Exploration for On-chip, Online Learning in Spiking Neural Networks
    Roy, Subhrajit
    Kar, Sougata Kumar
    Basu, Arindam
    [J]. 2014 14TH INTERNATIONAL SYMPOSIUM ON INTEGRATED CIRCUITS (ISIC), 2014, : 128 - 131
  • [9] Trainable quantization for Speedy Spiking Neural Networks
    Castagnetti, Andrea
    Pegatoquet, Alain
    Miramond, Benoit
    [J]. FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [10] An On-Chip Trainable and the Clock-Less Spiking Neural Network With 1R Memristive Synapses
    Shukla, Aditya
    Ganguly, Udayan
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2018, 12 (04) : 884 - 893