Predicting Short Trend of Stocks by Using Convolutional Neural Network and Candlestick Patterns

被引:0
|
作者
Jearanaitanakij, Kietikul [1 ]
Passaya, Bundit [1 ]
机构
[1] King Mongkut's Institute of Technology Ladkrabang, Department of Computer Engineering, Bangkok, Thailand
关键词
D O I
8912115
中图分类号
学科分类号
摘要
Forecasting
引用
收藏
页码:159 / 162
相关论文
共 50 条
  • [31] Predicting the combustion state of rotary kilns using a Convolutional Recurrent Neural Network
    Li, Tao
    Zhang, Zhenting
    Chen, Hua
    [J]. JOURNAL OF PROCESS CONTROL, 2019, 84 : 207 - 214
  • [32] Predicting Ride Hailing Service Demand Using Autoencoder and Convolutional Neural Network
    Ara, Zinat
    Hashemi, Mahdi
    [J]. INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 2022, 32 (01) : 109 - 129
  • [33] A novel graph convolutional feature based convolutional neural network for stock trend prediction
    Chen, Wei
    Jiang, Manrui
    Zhang, Wei-Guo
    Chen, Zhensong
    [J]. INFORMATION SCIENCES, 2021, 556 : 67 - 94
  • [34] Generic framework for multilingual short text categorization using convolutional neural network
    Enamoto, Liriam
    Weigang, Li
    Filho, Geraldo P. Rocha
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (09) : 13475 - 13490
  • [35] Generic framework for multilingual short text categorization using convolutional neural network
    Liriam Enamoto
    Li Weigang
    Geraldo P. Rocha Filho
    [J]. Multimedia Tools and Applications, 2021, 80 : 13475 - 13490
  • [36] Deep Convolutional Neural Network Classifier for Travel Patterns Using Binary Sensors
    Gochoo, Munkhjargal
    Liu, Shing-Hong
    Bayanduuren, Damdinsuren
    Tan, Tan-Hsu
    Velusamy, Vijayalakshmi
    Liu, Tsung-Yu
    [J]. 2017 IEEE 8TH INTERNATIONAL CONFERENCE ON AWARENESS SCIENCE AND TECHNOLOGY (ICAST), 2017, : 132 - 137
  • [37] Efficient Wafer Defect Patterns Recognition Using Deep Convolutional Neural Network
    Islam, M. M. Manjurul
    McAteer, Cormac
    Prasad, Girijesh
    [J]. 2023 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI, 2023, : 220 - 221
  • [38] Scalable flood level trend monitoring with surveillance cameras using a deep convolutional neural network
    de Vitry, Matthew Moy
    Kramer, Simon
    Wegner, Jan Dirk
    Leitao, Joao P.
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2019, 23 (11) : 4621 - 4634
  • [39] Cumuliform cloud formation control using parameter-predicting convolutional neural network
    Zhang, Zili
    Ma, Yue
    Li, Yunfei
    Li, Frederick W. B.
    Shum, Hubert P. H.
    Yang, Bailin
    Guo, Jing
    Liang, Xiaohui
    [J]. GRAPHICAL MODELS, 2020, 111
  • [40] Predicting Post Neoadjuvant Axillary Response Using a Novel Convolutional Neural Network Algorithm
    Ha, Richard
    Chang, Peter
    Karcich, Jenika
    Mutasa, Simukayi
    Van Sant, Eduardo Pascual
    Connolly, Eileen
    Chin, Christine
    Taback, Bret
    Liu, Michael Z.
    Jambawalikar, Sachin
    [J]. ANNALS OF SURGICAL ONCOLOGY, 2018, 25 (10) : 3037 - 3043