Methods for Non-Intrusive Out-Of-Distribution Images Detection

被引:0
|
作者
Vlasova, Anastasiia V. [1 ]
Shkanaev, Aleksandr Yu. [1 ]
Sholomov, Dmitry L. [2 ]
机构
[1] Cognit Pilot, Moscow, Russia
[2] RAS, Inst Informat Transmiss Problems, Moscow, Russia
关键词
Out-of-distribution; data evaluation; relative mahalanobis distance; knn distance; entropy; confident learning;
D O I
10.1117/12.3023403
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Selecting representative data is a key factor in improving the performance of machine learning algorithms. In this paper we focus on out-of-distribution (OoD) methods evaluation, which can be integrated into ML project lifecycle in a non-intrusive way, without changing a model architecture. Considered methods are applicable to image classification datasets analysis. In addition to commonly used AUROC metric, we evaluate the number of out-of-distribution samples misclassified with high confidence. Case studies were conducted on benchmark and production datasets. As a result, we provide practical guidance for data evaluation and recommendations on which method to use to detect different types of OoD images.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Generalized Out-of-Distribution Detection: A Survey
    Yang, Jingkang
    Zhou, Kaiyang
    Li, Yixuan
    Liu, Ziwei
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024,
  • [32] Semantically Coherent Out-of-Distribution Detection
    Yang, Jingkang
    Wang, Haoqi
    Feng, Litong
    Yan, Xiaopeng
    Zheng, Huabin
    Zhang, Wayne
    Liub, Ziwei
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8281 - 8289
  • [33] Likelihood Ratios for Out-of-Distribution Detection
    Ren, Jie
    Liu, Peter J.
    Fertig, Emily
    Snoek, Jasper
    Poplin, Ryan
    DePristo, Mark A.
    Dillon, Joshua V.
    Lakshminarayanan, Balaji
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [34] Semantic enhanced for out-of-distribution detection
    Jiang, Weijie
    Yu, Yuanlong
    [J]. FRONTIERS IN NEUROROBOTICS, 2022, 16
  • [35] Unsupervised evaluation for out-of-distribution detection
    Zhang, Yuhang
    Hu, Jiani
    Wen, Dongchao
    Deng, Weihong
    [J]. Pattern Recognition, 2025, 160
  • [36] Non-intrusive induction motor speed detection
    Orji, Uzoma A.
    Remscrim, Zachary
    Schantz, Christopher
    Donnal, John
    Paris, James
    Gillman, Mark
    Surakitbovorn, Kawin
    Leeb, Steven B.
    Kirtley, James L.
    [J]. IET ELECTRIC POWER APPLICATIONS, 2015, 9 (05) : 388 - 396
  • [37] Integration of intrusive and non-intrusive methods for corrosion and sand/erosion monitoring
    Wold, K.
    Stoen, R.
    Rapone, M.
    [J]. METALLURGIA ITALIANA, 2012, (02): : 13 - 18
  • [38] Non-intrusive detection of polyatomic combustion intermediates via photoionization out of Rydberg states
    Rudakov, Fedor
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [39] MOOD 2020: A Public Benchmark for Out-of-Distribution Detection and Localization on Medical Images
    Zimmerer, David
    Full, Peter M.
    Isensee, Fabian
    Jaeger, Paul
    Adler, Tim
    Petersen, Jens
    Koehler, Gregor
    Ross, Tobias
    Reinke, Annika
    Kascenas, Antanas
    Jensen, Bjorn Sand
    O'Neil, Alison Q.
    Tan, Jeremy
    Hou, Benjamin
    Batten, James
    Qiu, Huaqi
    Kainz, Bernhard
    Shvetsova, Nina
    Fedulova, Irina
    Dylov, Dmitry, V
    Yu, Baolun
    Zhai, Jianyang
    Hu, Jingtao
    Si, Runxuan
    Zhou, Sihang
    Wang, Siqi
    Li, Xinyang
    Chen, Xuerun
    Zhao, Yang
    Marimont, Sergio Naval
    Tarroni, Giacomo
    Saase, Victor
    Maier-Hein, Lena
    Maier-Hein, Klaus
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (10) : 2728 - 2738
  • [40] Open-set face identification with automatic detection of out-of-distribution images
    Sokolova, A. D.
    Savchenko, A., V
    Nikolenko, S., I
    [J]. COMPUTER OPTICS, 2022, 46 (05) : 801 - +