Handling missing data when estimating causal effects with targeted maximum likelihood estimation

被引:0
|
作者
Dashti, S. Ghazaleh [1 ,2 ]
Lee, Katherine J. [1 ,2 ]
Simpson, Julie A. [3 ]
White, Ian R. [4 ]
Carlin, John B. [1 ,2 ]
Moreno-Betancur, Margarita [1 ,2 ]
机构
[1] Univ Melbourne, Melbourne Med Sch, Dept Paediat, Clin Epidemiol & Biostat Unit, Parkville, Vic 3052, Australia
[2] Royal Childrens Hosp, Murdoch Childrens Res Inst, Clin Epidemiol & Biostat Unit, 50 Flemington Rd, Parkville, Vic 3052, Australia
[3] Univ Melbourne, Melbourne Sch Populat & Global Hlth, Ctr Epidemiol & Biostat, Melbourne, Vic 3053, Australia
[4] UCL, MRC Clin Trials Unit UCL, London WC1V 6LJ, England
关键词
missing data; causal inference; targeted maximum likelihood estimation; multiple imputation; MULTIPLE IMPUTATION; DEFINITION; INFERENCE;
D O I
10.1093/aje/kwae012
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Targeted maximum likelihood estimation (TMLE) is increasingly used for doubly robust causal inference, but how missing data should be handled when using TMLE with data-adaptive approaches is unclear. Based on data (1992-1998) from the Victorian Adolescent Health Cohort Study, we conducted a simulation study to evaluate 8 missing-data methods in this context: complete-case analysis, extended TMLE incorporating an outcome-missingness model, the missing covariate missing indicator method, and 5 multiple imputation (MI) approaches using parametric or machine-learning models. We considered 6 scenarios that varied in terms of exposure/outcome generation models (presence of confounder-confounder interactions) and missingness mechanisms (whether outcome influenced missingness in other variables and presence of interaction/nonlinear terms in missingness models). Complete-case analysis and extended TMLE had small biases when outcome did not influence missingness in other variables. Parametric MI without interactions had large bias when exposure/outcome generation models included interactions. Parametric MI including interactions performed best in bias and variance reduction across all settings, except when missingness models included a nonlinear term. When choosing a method for handling missing data in the context of TMLE, researchers must consider the missingness mechanism and, for MI, compatibility with the analysis method. In many settings, a parametric MI approach that incorporates interactions and nonlinearities is expected to perform well.
引用
收藏
页码:1019 / 1030
页数:12
相关论文
共 50 条
  • [1] Handling missing data for causal effect estimation in cohort studies using Targeted Maximum Likelihood Estimation
    Dashti, Ghazaleh
    Lee, Katherine J.
    Simpson, Julie A.
    White, Ian R.
    Carlin, John B.
    Moreno-Betancur, Margarita
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2021, 50 : 55 - 55
  • [2] Targeted maximum likelihood estimation of causal effects with interference: A simulation study
    Zivich, Paul N.
    Hudgens, Michael G.
    Brookhart, Maurice A.
    Moody, James
    Weber, David J.
    Aiello, Allison E.
    [J]. STATISTICS IN MEDICINE, 2022, 41 (23) : 4554 - 4577
  • [3] Handling missing values in population data:: consequences for maximum likelihood estimation of haplotype frequencies
    Gourraud, PA
    Génin, E
    Cambon-Thomsen, A
    [J]. EUROPEAN JOURNAL OF HUMAN GENETICS, 2004, 12 (10) : 805 - 812
  • [4] Handling missing values in population data: consequences for maximum likelihood estimation of haplotype frequencies
    Pierre-Antoine Gourraud
    Emmanuelle Génin
    Anne Cambon-Thomsen
    [J]. European Journal of Human Genetics, 2004, 12 : 805 - 812
  • [5] Collaborative Targeted Maximum Likelihood Estimation to Assess Causal Effects in Observational Studies
    Gruber, Susan
    van der Laan, Mark
    [J]. BIOPHARMACEUTICAL APPLIED STATISTICS SYMPOSIUM: BIOSTATISTICAL ANALYSIS OF CLINICAL TRIALS, VOL 2, 2018, : 1 - 23
  • [6] MISSING DATA AND MAXIMUM-LIKELIHOOD ESTIMATION
    HSIAO, C
    [J]. ECONOMICS LETTERS, 1980, 6 (03) : 249 - 253
  • [7] Targeted Maximum Likelihood Estimation for Causal Inference in Observational Studies
    Schuler, Megan S.
    Rose, Sherri
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2017, 185 (01) : 65 - 73
  • [8] Maximum likelihood estimation of missing data probability for nonmonotone missing at random data
    Zhao, Yang
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2023, 32 (01): : 197 - 209
  • [9] Maximum likelihood estimation of missing data probability for nonmonotone missing at random data
    Yang Zhao
    [J]. Statistical Methods & Applications, 2023, 32 : 197 - 209
  • [10] Semiparametric maximum likelihood estimation with data missing not at random
    Morikawa, Kosuke
    Kim, Jae Kwang
    Kano, Yutaka
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2017, 45 (04): : 393 - 409