Recent progress of 3d transition metal as single-atom catalysts for electrochemical CO2 reduction to CO

被引:1
|
作者
Lu, Song [1 ,2 ]
Chavan, Sachin Maruti [3 ]
Yu, Zhixin [2 ]
机构
[1] Shaoxing Univ, Inst New Energy, Sch Chem & Chem Engn, Shaoxing 312000, Peoples R China
[2] Univ Stavanger, Dept Energy & Petr Engn, N-4036 Stavanger, Norway
[3] Univ Stavanger, Dept Chem Biosci & Environm Engn, N-4068 Stavanger, Norway
关键词
Electrocatalysis; CO 2 reduction to CO; 3d transition metal; Single -atom catalysts; COORDINATION-NUMBER; SITES;
D O I
10.1016/j.jcou.2024.102690
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical carbon dioxide reduction (ECR) presents a promising technology to attain carbon neutrality. Recent studies have indicated that transition metal atoms as single-atom catalysts (SACs) show many advantages in ECR due to their tunable electronic structure, high atom utilization rate, and uniform active site. Among the various reduction products, CO is an important chemical feedstock that can be used in some essential processes such as Fischer-Tropsch, which produces a series of chemicals and fuels. However, few relevant reviews focus on 3d transition atoms as SACs for ECR to CO. In this review, we first emphasize the advantages of SACs and the CO product. Then, we summarize the recent development of SACs (Mn, Fe, Co, Ni, Cu, and Zn) in ECR to CO, focusing on the configurations of the active center. Finally, we briefly propose suggestions for future advancement of transition metal SACs for ECR to CO.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Single-atom catalysts: stimulating electrochemical CO2 reduction reaction in the industrial era
    Zhang, Zedong
    Wang, Dingsheng
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (11) : 5863 - 5877
  • [32] Fundamentals of Electrochemical CO2 Reduction on Single-Metal-Atom Catalysts
    Nguyen, Tu N.
    Salehi, Mahdi
    Quyet Van Le
    Seifitokaldani, Ali
    Cao Thang Dinh
    ACS CATALYSIS, 2020, 10 (17): : 10068 - 10095
  • [33] A universal strategy for the synthesis of transition metal single atom catalysts toward electrochemical CO2 reduction
    Li, Bowen
    Liang, Yan
    Zhu, Yinlong
    CHEMICAL COMMUNICATIONS, 2024, 60 (84) : 12217 - 12220
  • [34] Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts
    Sudarshan Vijay
    Wen Ju
    Sven Brückner
    Sze-Chun Tsang
    Peter Strasser
    Karen Chan
    Nature Catalysis, 2021, 4 : 1024 - 1031
  • [35] Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts
    Vijay, Sudarshan
    Ju, Wen
    Bruckner, Sven
    Tsang, Sze-Chun
    Strasser, Peter
    Chan, Karen
    NATURE CATALYSIS, 2021, 4 (12) : 1024 - 1031
  • [36] Theoretical considerations on activity of the electrochemical CO2 reduction on metal single-atom catalysts with asymmetrical active sites
    Fu, Sijia
    Liu, Xin
    Ran, Jingrun
    Jiao, Yan
    CATALYSIS TODAY, 2022, 397 : 574 - 580
  • [37] Key factors for designing single-atom metal-nitrogen-carbon catalysts for electrochemical CO2 reduction
    Jia, Chen
    Dastafkan, Kamran
    Zhao, Chuan
    CURRENT OPINION IN ELECTROCHEMISTRY, 2022, 31
  • [38] Recent strategy(ies) for the electrocatalytic reduction of CO2: Ni single-atom catalysts for the selective electrochemical formation of CO in aqueous electrolytes
    Yadav, Dharmendra Kumar
    Singh, Devesh Kumar
    Ganesan, Vellaichamy
    CURRENT OPINION IN ELECTROCHEMISTRY, 2020, 22 : 87 - 93
  • [39] Emerging materials for electrochemical CO2 reduction: progress and optimization strategies of carbon-based single-atom catalysts
    Qu, Guangfei
    Wei, Kunling
    Pan, Keheng
    Qin, Jin
    Lv, Jiaxin
    Li, Junyan
    Ning, Ping
    NANOSCALE, 2023, 15 (08) : 3666 - 3692
  • [40] Theoretical investigation on graphene-supported single-atom catalysts for electrochemical CO2 reduction
    Wang, Xiting
    Niu, Huan
    Liu, Yuanshuang
    Shao, Chen
    Robertson, John
    Zhang, Zhaofu
    Guo, Yuzheng
    CATALYSIS SCIENCE & TECHNOLOGY, 2020, 10 (24) : 8465 - 8472