4D printing and annealing of PETG composites reinforced with short carbon fibers

被引:24
|
作者
Rahmatabadi, Davood [1 ]
Soleyman, Elyas [1 ]
Fallah Min Bashi, Mahshid [1 ]
Aberoumand, Mohammad [1 ]
Soltanmohammadi, Kianoosh [1 ]
Ghasemi, Ismaeil [2 ]
Baniassadi, Majid [1 ]
Abrinia, Karen [1 ]
Bodaghi, Mahdi [3 ]
Baghani, Mostafa [1 ]
机构
[1] Univ Tehran, Coll Engn, Sch Mech Engn, Tehran, Iran
[2] Iran Polymer & Petrochem Inst, Fac Proc, Tehran, Iran
[3] Nottingham Trent Univ, Sch Sci & Technol, Dept Engn, Nottingham NG11 8NS, Notts, England
关键词
PETG; Short carbon fiber; 4D printing; annealing; shape memory effect; POLYMER COMPOSITES; BEHAVIOR;
D O I
10.1088/1402-4896/ad3b40
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this study, for the first time, post-heat treatment was applied to improve the stress recovery of short carbon fiber reinforced PETG (SCFRPETG). PETG and SCFRPETG composite were printed under optimal conditions, and constrained and free shape memory cycles were applied under compression and three-point bending loadings to assess shape and stress recovery. The results of the free shape memory test for both vertical and horizontal patterns showed that PETG composite also has a higher shape memory effect (SME) compared to PETG. The SME was significantly improved by performing heat treatment. The stress recovery values for pure PETG, reinforced PETG before and after annealing are 2.48 MPa, 3.04 MPa and 3.18 MPa, respectively. It showed that the addition of 1.5% carbon fiber increases the stress recovery by 22%. The increasing trend reaches 28% by performing post-heat treatment. Additionally, altering the printing pattern affects the programming and stress recovery values. For the SCFRPETG composite samples before and after annealing, changing the printing pattern from horizontal to vertical, resulted in a 16% and 7% increase in recovery stress, respectively. SEM results confirm that the annealing process removes the layered structure, micro-holes caused by shrinkage and 4D printing mechanism. Using the controlled heat treatment method can be a practical solution to solve the problem of adhesion and reduce the anisotropy of FDM 3D printed layers.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Biomimetic 4D printing
    Sydney Gladman A.
    Matsumoto E.A.
    Nuzzo R.G.
    Mahadevan L.
    Lewis J.A.
    Nature Materials, 2016, 15 (4) : 413 - 418
  • [42] A review of 4D printing
    Momeni, Farhang
    Hassani, Seyed M. Mehdi N.
    Liu, Xun
    Ni, Jun
    MATERIALS & DESIGN, 2017, 122 : 42 - 79
  • [43] THE PATH TO 4D PRINTING
    不详
    ADVANCED MATERIALS & PROCESSES, 2020, 178 (05): : 80 - 80
  • [44] Nature-Mimic Tough Helicoidal Composites with Aligned Short Carbon Fibers by 3D Printing
    Wang, Jianye
    Li, Na
    Fu, Kunkun
    Li, Yan
    Yang, Bin
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2022, 307 (03)
  • [45] Laws of 4D Printing
    Momeni, Farhang
    Ni, Jun
    ENGINEERING, 2020, 6 (09) : 1035 - 1055
  • [46] Progress on 4D Printing
    Liu H.
    He H.
    Jia Y.
    Huang B.
    Peng X.
    Geng Y.
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2019, 35 (07): : 175 - 181
  • [47] Biomimetic 4D printing
    Gladman, A. Sydney
    Matsumoto, Elisabetta A.
    Nuzzo, Ralph G.
    Mahadevan, L.
    Lewis, Jennifer A.
    NATURE MATERIALS, 2016, 15 (04) : 413 - +
  • [48] 4D Printing at the Microscale
    Spiegel, Christoph A.
    Hippler, Marc
    Muenchinger, Alexander
    Bastmeyer, Martin
    Barner-Kowollik, Christopher
    Wegener, Martin
    Blasco, Eva
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (26)
  • [49] Investigating the Effect of ABS on the Mechanical Properties, Morphology, Printability, and 4D Printing of PETG-ABS Blends
    Mirasadi, Kiandokht
    Rahmatabadi, Davood
    Ghasemi, Ismaeil
    Khodaei, Mohammad
    Baniassadi, Majid
    Baghani, Mostafa
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2024, 309 (06)
  • [50] 4D printing roadmap
    Bodaghi, Mahdi
    Wang, Linlin
    Zhang, Fenghua
    Liu, Yanju
    Leng, Jinsong
    Xing, Ruizhe
    Dickey, Michael D.
    Vanaei, Saeedeh
    Elahinia, Mohammad
    Hoa, Suong Van
    Zhang, Danchen
    Winands, Katarina
    Gries, Thomas
    Zaman, Saqlain
    Soleimanzadeh, Hesam
    Barsi Palmic, Tibor
    Slavic, Janko
    Tadesse, Yonas
    Ji, Qinglei
    Zhao, Chun
    Feng, Lei
    Ahmed, Kumkum
    Islam Shiblee, M. D. Nahin
    Zeenat, Lubna
    Pati, Falguni
    Ionov, Leonid
    Chinnakorn, Atchara
    Nuansing, Wiwat
    Sousa, A. M.
    Henriques, J.
    Piedade, A. P.
    Blasco, Eva
    Li, Honggeng
    Jian, Bingcong
    Ge, Qi
    Demoly, Frederic
    Qi, H. Jerry
    Andre, Jean-Claude
    Nafea, Marwan
    Fu, Yun-Fei
    Rolfe, Bernard
    Tao, Ye
    Wang, Guanyun
    Zolfagharian, Ali
    SMART MATERIALS AND STRUCTURES, 2024, 33 (11)