Parameters estimation of fabricated polysulfone membrane for CO2/CH4 separation

被引:3
|
作者
Abdulabbas, Ali A. [1 ,2 ]
Mohammed, Thamer J. [2 ]
Al-Hattab, Tahseen A. [3 ]
机构
[1] Al Amarah Univ Coll, Dept Chem Engn & Petr Ind, Maysan, Iraq
[2] Univ Technol Baghdad, Chem Engn Dept, Baghdad, Iraq
[3] Univ Babylon, Coll Engn, Chem Engn Dept, Hillah, Iraq
关键词
Membrane separation; PSF membrane; Mole fraction; Finite element method; COMSOL; GAS; VOLUME; PERFORMANCE; PERMEATION; SORPTION; GLASSY; FLUX;
D O I
10.1016/j.rineng.2024.101929
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The emission of CO2 into the climate due to factory operations is a major health and environmental concern. The simplicity and cost-effectiveness of membrane-based gas separation make it a competitive industrial gas separation technology. However, further research is necessary to study fabrication and theoretical simulations membrane performance. There is also a research gap in analyzing different membrane designs and operational factors that affect gas separation performance. Therefore, this study employed computational fluid dynamics (CFD) to assess the polysulfone (PSF) fabricated membrane, considering four proposed operational and design factors. The CFD predicts the concentration and velocity distribution of the components. Fick's law is employed to represent the gas transport process over the membrane, while the Navier-Stokes equation is utilized to drive the flow of gases in both the inlet and permeate sides of the permeation unit. The outcomes of gas flow rate, temperature, pressure, and diameter of the membrane module on the CO2 mole fraction were investigated. Furthermore, at a high gas flow rate, the CO2 mole fraction increase in permeate. Increasing the feed temperature from 313 to 393 K results in a decrease in the CO2 mole fraction at the permeate side from 39% to 36%. The CO2 mole fraction at the site of permeation slightly decreases as the pressure increases. However, increasing the inside diameter of the cell membrane improves the mole fraction of CO2. According to the findings, the CFD model provides a valuable study on the influence of operating and design factors on a gas separation unit.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Separation of CO2 and CH4 through two types of polyimide membrane
    Zhang, JY
    Lu, JJ
    Liu, WM
    Xue, QJ
    THIN SOLID FILMS, 1999, 340 (1-2) : 106 - 109
  • [22] Practical designs of membrane contactors and their performances in CO2/CH4 separation
    Kim, Seong-Joong
    Park, Ahrumi
    Nam, Seung-Eun
    Park, You-In
    Lee, Pyung Soo
    CHEMICAL ENGINEERING SCIENCE, 2016, 155 : 239 - 247
  • [23] MD modeling of CO2/CH4 gas separation in a hybrid membrane
    Achenie, Luke E.
    Wang, Zhenxing
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [24] Separation of CO2 and CH4 through two types of polyimide membrane
    Zhang, Junyan
    Lu, Jinjun
    Liu, Weimin
    Xue, Qunji
    Thin Solid Films, 340 (01): : 106 - 109
  • [25] Effect of low-frequency oxygen plasma on polysulfone membranes for CO2/CH4 Separation
    Modarresi, Siamak
    Soltanieh, Mohammad
    Mousavi, Seyyed Abbas
    Shabani, Iman
    JOURNAL OF APPLIED POLYMER SCIENCE, 2012, 124 : E199 - E204
  • [26] Polysulfone membranes containing ethylene glycol monomers: synthesis, characterization, and CO2/CH4 separation
    Luo Jujie
    Xiaoqi He
    Ziqin Si
    Journal of Polymer Research, 2017, 24
  • [27] Polysulfone membranes containing ethylene glycol monomers: synthesis, characterization, and CO2/CH4 separation
    Luo Jujie
    He, Xiaoqi
    Si, Ziqin
    JOURNAL OF POLYMER RESEARCH, 2016, 24 (01)
  • [28] Chemical Vapor Deposition Technique to Fabricate Zeolitic Imidazolate Framework-8/Polysulfone Membrane for CO2/CH4 Separation
    H. Hassannia Golsefid
    O. Alizadeh
    F. Dorosti
    Theoretical Foundations of Chemical Engineering, 2022, 56 : 1116 - 1126
  • [29] Chemical Vapor Deposition Technique to Fabricate Zeolitic Imidazolate Framework-8/Polysulfone Membrane for CO2/CH4 Separation
    Golsefid, H. Hassannia
    Alizadeh, O.
    Dorosti, F.
    THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING, 2022, 56 (06) : 1116 - 1126
  • [30] Effect of surface-etched modification on halloysite nanotubes (HNTs) for polysulfone mixed matrix membrane in CO2/CH4 separation
    Jafa, J.
    Anissuzaman, S. M.
    Chiam, C. K.
    Bolong, N.
    Razali, A. R.
    Ismail, A. F.
    Ismail, N. M.
    26TH REGIONAL SYMPOSIUM ON CHEMICAL ENGINEERING (RSCE 2019), 2020, 778