A scalable ferroelectric non-volatile memory operating at 600 °C

被引:5
|
作者
Pradhan, Dhiren K. [1 ]
Moore, David C. [2 ]
Kim, Gwangwoo [1 ,5 ]
He, Yunfei [1 ]
Musavigharavi, Pariasadat [1 ,3 ,6 ]
Kim, Kwan-Ho [1 ]
Sharma, Nishant [1 ]
Han, Zirun [1 ,4 ]
Du, Xingyu [1 ]
Puli, Venkata S. [2 ]
Stach, Eric A. [3 ]
Kennedy, W. Joshua [2 ]
Glavin, Nicholas R. [2 ]
Olsson III, Roy H. [1 ]
Jariwala, Deep [1 ]
机构
[1] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
[2] Air Force Res Lab, Mat & Mfg Directorate, Dayton, OH 45402 USA
[3] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA USA
[4] Univ Penn, Dept Phys & Astron, Philadelphia, PA USA
[5] Chungbuk Natl Univ, Dept Engn Chem, Cheongju, South Korea
[6] Univ Cent Florida, Dept Mat Sci & Engn, Orlando, FL USA
基金
美国国家科学基金会;
关键词
HIGH-TEMPERATURE; BEHAVIOR;
D O I
10.1038/s41928-024-01148-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Non-volatile memory devices that can operate reliably at high temperature are required for the development of extreme environment electronics. However, creating such devices remains challenging. Here we report a non-volatile memory device that is based on an aluminium scandium nitride (Al0.68Sc0.32N) ferroelectric diode and can operate at temperatures of up to 600 degrees C. The devices are composed of metal-insulator-metal structures of nickel/AlScN/platinum grown on 4-inch silicon wafers. They exhibit clear ferroelectric switching up to 600 degrees C with distinct on and off states. At 600 degrees C, the devices exhibit one million read cycles and readable on-off ratios above 1 for over 60 h. The operating voltages of the AlScN ferrodiodes are less than 15 V at 600 degrees C and are thus compatible with silicon-carbide-based high-temperature logic technology. A non-volatile memory device that is based on an aluminium scandium nitride (Al0.68Sc0.32N) ferroelectric diode can operate at temperatures of up to 600 degrees C.
引用
收藏
页码:348 / 355
页数:8
相关论文
共 50 条
  • [41] ANALYSIS OF NON-VOLATILE POLARIZED MEMORY OF SEMICONDUCTOR-FERROELECTRIC HETEROSTRUCTURE JUNCTION
    OKUYAMA, M
    YOKOYAMA, K
    HAMAKAWA, Y
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 1979, 18 (06) : 1111 - 1115
  • [42] Volatile and Non-Volatile Single Electron Memory
    Touati, A.
    Kalboussi, A.
    [J]. JOURNAL OF NANO- AND ELECTRONIC PHYSICS, 2013, 5 (03)
  • [43] Lead based ferroelectric capacitors for low voltage non-volatile memory applications
    Aggarwal, S
    Prakash, AS
    Song, TK
    Sadashivan, S
    Dhote, AM
    Yang, B
    Ramesh, R
    Kisler, Y
    Bernacki, SE
    [J]. INTEGRATED FERROELECTRICS, 1998, 19 (1-4) : 159 - 177
  • [44] Non-Volatile Ferroelectric Memory with Position-Addressable Polymer Semiconducting Nanowire
    Hwang, Sun Kak
    Min, Sung-Yong
    Bae, Insung
    Cho, Suk Man
    Kim, Kang Lib
    Lee, Tae-Woo
    Park, Cheolmin
    [J]. SMALL, 2014, 10 (10) : 1976 - 1984
  • [45] Voltage Controlled Nanoscale Magnetic Devices for Non-Volatile Memory and Scalable Quantum Computing
    Rajib, Md Mahadi
    Atulasimha, Jayasimha
    [J]. 2023 IEEE 73RD ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE, ECTC, 2023, : 1798 - 1803
  • [46] Embedded Non-Volatile Memory Technologies
    Shum, Danny
    [J]. CHINA SEMICONDUCTOR TECHNOLOGY INTERNATIONAL CONFERENCE 2011 (CSTIC 2011), 2011, 34 (01): : 3 - 8
  • [47] A RRAM that endures: Non-volatile memory
    Zeissler, Katharina
    [J]. Nature Electronics, 2024, 7 (12)
  • [48] Non-volatile memory based on nanostructures
    Kalinin, Sergei
    Yang, J. Joshua
    Demming, Anna
    [J]. NANOTECHNOLOGY, 2011, 22 (25)
  • [49] Non-Volatile memory (NVM) technologies
    Shao, Zili
    Chang, Yuan-Hao
    [J]. JOURNAL OF SYSTEMS ARCHITECTURE, 2016, 71 : 1 - 1
  • [50] Advances in non-volatile memory technology
    Wong, Hei
    [J]. MICROELECTRONICS RELIABILITY, 2012, 52 (04) : 611 - 612