Simultaneous Formation of Polyhydroxyurethanes and Multicomponent Semi-IPN Hydrogels

被引:0
|
作者
Carbajo-Gordillo, Ana I. [1 ]
Benito, Elena [1 ]
Galbis, Elsa [1 ]
Grosso, Roberto [1 ]
Iglesias, Nieves [1 ]
Valencia, Concepcion [2 ,3 ]
Lucas, Ricardo [1 ]
Garcia-Martin, M. -Gracia [1 ]
de-Paz, M. -Violante [1 ]
机构
[1] Univ Seville, Fac Farm, Dept Quim Organ & Farmaceut, Seville 41012, Spain
[2] Univ Huelva, Fac Ciencias Expt, Dept Ingn Quim, Campus El Carmen, Huelva 21071, Spain
[3] Univ Huelva, Pro2TecS Chem Proc & Prod Technol Res Ctr, Huelva 21071, Spain
关键词
NIPU; cyclic carbonates; PHU; functional polymers; interpenetrated networks; IPN; SIPN; porous materials; rheological properties; CYCLIC CARBONATES; ISOCYANATE; POLYURETHANES; AMINOLYSIS;
D O I
10.3390/polym16070880
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
This study introduces an efficient strategy for synthesizing polyhydroxyurethane-based multicomponent hydrogels with enhanced rheological properties. In a single-step process, 3D materials composed of Polymer 1 (PHU) and Polymer 2 (PVA or gelatin) were produced. Polymer 1, a crosslinked polyhydroxyurethane (PHU), grew within a colloidal solution of Polymer 2, forming an interconnected network. The synthesis of Polymer 1 utilized a Non-Isocyanate Polyurethane (NIPU) methodology based on the aminolysis of bis(cyclic carbonate) (bisCC) monomers derived from 1-thioglycerol and 1,2-dithioglycerol (monomers A and E, respectively). This method, applied for the first time in Semi-Interpenetrating Network (SIPN) formation, demonstrated exceptional orthogonality since the functional groups in Polymer 2 do not interfere with Polymer 1 formation. Optimizing PHU formation involved a 20-trial methodology, identifying influential variables such as polymer concentration, temperature, solvent (an aprotic and a protic solvent), and the organo-catalyst used [a thiourea derivative (TU) and 1,8-diazabicyclo [5.4.0]undec-7-ene (DBU)]. The highest molecular weights were achieved under near-bulk polymerization conditions using TU-protic and DBU-aprotic as catalyst-solvent combinations. Monomer E-based PHU exhibited higher Mw over bar than monomer A-based PHU (34.1 kDa and 16.4 kDa, respectively). Applying the enhanced methodology to prepare 10 multicomponent hydrogels using PVA or gelatin as the polymer scaffold revealed superior rheological properties in PVA-based hydrogels, exhibiting solid-like gel behavior. Incorporating monomer E enhanced mechanical properties and elasticity (with loss tangent values of 0.09 and 0.14). SEM images unveiled distinct microstructures, including a sponge-like pattern in certain PVA-based hydrogels when monomer A was chosen, indicating the formation of highly superporous interpenetrated materials. In summary, this innovative approach presents a versatile methodology for obtaining advanced hydrogel-based systems with potential applications in various biomedical fields.
引用
收藏
页数:21
相关论文
共 50 条
  • [22] Preparation and swelling behaviors of rapid responsive semi-IPN NaCMC/PNIPAm hydrogels
    Yi Guobin
    Huang Yunwei
    Xiong Fuhua
    Liao Bing
    Yang Jin
    Chen Xudong
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2011, 26 (06): : 1073 - 1078
  • [23] Semi-IPN Carrageenan-Based Nanocomposite Hydrogels: Synthesis and Swelling Behavior
    Mahdavinia, Gholam Reza
    Marandi, Gholam Bagheri
    Pourjavadi, Ali
    Kiani, Gholamreza
    JOURNAL OF APPLIED POLYMER SCIENCE, 2010, 118 (05) : 2989 - 2997
  • [24] Preparation and Swelling Behaviors of Rapid Responsive Semi-IPN NaCMC/PNIPAm Hydrogels
    易国斌
    JournalofWuhanUniversityofTechnology(MaterialsScienceEdition), 2011, 26 (06) : 1073 - 1078
  • [25] Influence of dry methods on the swelling and degradation of semi-IPN hydrogels containing amylose
    Li Shengfang
    Yang Yajiang
    Yang Xiangliang
    Xu Huibi
    ACTA POLYMERICA SINICA, 2007, (07): : 593 - 598
  • [26] Hyaluronic Acid and Dextran-Based Semi-IPN Hydrogels as Biomaterials for Bioprinting
    Pescosolido, Laura
    Schuurman, Wouter
    Malda, Jos
    Matricardi, Pietro
    Alhaique, Franco
    Coviello, Tommasina
    van Weeren, P. Rene
    Dhert, Wouter J. A.
    Hennink, Wim E.
    Vermonden, Tina
    BIOMACROMOLECULES, 2011, 12 (05) : 1831 - 1838
  • [27] SEMI-IPN PHBV/PVA NANOCOMPOSITE HYDROGELS WITH CONDUCTIVE NANOPARTICLES FOR TISSUE ENGINEERING
    Aparicio Collado, Jose Luis
    Jose Novoa, Juan
    Molina Mateo, Jose
    Torregrosa Cabanilles, Constantino
    Serrano Aroca, Angel
    Sabater i Serra, Roser
    TISSUE ENGINEERING PART A, 2022, 28 : S494 - S494
  • [28] Stimuli-response of hydrophilic-hydrophobic semi-IPN hydrogels on temperature
    Zhang, JH
    ACTA PHYSICO-CHIMICA SINICA, 2003, 19 (01) : 90 - 93
  • [29] Porous Agarose-Based Semi-IPN Hydrogels: Characterization and Cell Affinity Studies
    Vardar, E.
    Vert, Michel
    Coudane, Jean
    Hasirci, V.
    Hasirci, N.
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2012, 23 (18) : 2273 - 2286
  • [30] Temperature-sensitive PVA/PNIPAAm semi-IPN hydrogels with enhanced responsive properties
    Zhang, Jian-Tao
    Bhat, Rahila
    Jandt, Klaus D.
    ACTA BIOMATERIALIA, 2009, 5 (01) : 488 - 497