A Variance-Based Sensitivity Analysis Approach for Identifying Interactive Exposures

被引:0
|
作者
Lu, Ruijin [1 ]
Zhang, Boya [2 ]
Birukov, Anna [3 ]
Zhang, Cuilin [4 ]
Chen, Zhen [5 ]
机构
[1] Washington Univ St Louis, Sch Med, St Louis, MO 63130 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA USA
[3] Harvard TH Chan Sch Publ Hlth, Boston, MA USA
[4] Natl Univ Singapore, Yong Loo Lin Sch Med, Singapore, Singapore
[5] Eunice Kennedy Shriver Natl Inst Child Hlth & Huma, NIH, Bethesda, MD USA
基金
美国国家卫生研究院;
关键词
Gaussian process regression; Sensitivity analysis; Interaction; Chemical mixture; MODELS; ASSOCIATIONS; PREGNANCY;
D O I
10.1007/s12561-024-09427-8
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Chemical mixtures can significantly affect human health, but understanding the interactions among various chemical exposures and identifying influential ones in relation to some health outcomes are difficult. Bayesian kernel machine regression (BKMR) is a widely used model for capturing nonlinear dynamics and interactions between multiple exposures and health outcomes. However, tools for quantifying the interactions captured by this flexible model are scarce. Utilizing the inherent connection between BKMR and Gaussian process regressions, we adopt the classic variance-based sensitivity analysis tools from the uncertainty quantification community and propose a variable clustering approach to quantify interactions, discover high-order interaction terms, and rank variable importance. The performance of this method is demonstrated in a range of simulation scenarios and applied to a real dataset to examine the interactive effects of multiple per- and polyfluoroalkyl substances exposures, dietary patterns, and gestational diabetes mellitus status on thyroid function in women during their late pregnancy.
引用
收藏
页码:520 / 541
页数:22
相关论文
共 50 条
  • [31] Variance-based Sensitivity Analyses of Piezoelectric Models
    Lahmer, T.
    Ilg, J.
    Lerch, R.
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2015, 106 (02): : 105 - 126
  • [32] Variance-based sensitivity analysis of the probability of hydrologically induced slope instability
    Hamm, N. A. S.
    Hall, J. W.
    Anderson, M. G.
    [J]. COMPUTERS & GEOSCIENCES, 2006, 32 (06) : 803 - 817
  • [33] Approach to clustering with variance-based XCS
    Zhang C.
    Tatsumi T.
    Nakata M.
    Takadama K.
    [J]. 1600, Fuji Technology Press (21): : 885 - 894
  • [34] Variance based sensitivity analysis of interactive buckling
    Kala, Z.
    [J]. ADVANCES IN SAFETY, RELIABILITY AND RISK MANAGEMENT, 2012, : 2230 - 2234
  • [35] Variance-based sensitivity analysis of biological uncertainties in carbon ion therapy
    Kamp, F.
    Brueningk, S.
    Cabal, G.
    Mairani, A.
    Parodi, K.
    Wilkens, J. J.
    [J]. PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2014, 30 (05): : 583 - 587
  • [36] Variance-based sensitivity analysis of model outputs using surrogate models
    Shahsavani, D.
    Grimvall, A.
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2011, 26 (06) : 723 - 730
  • [37] Variance-based sensitivity analysis for the influence of residual stress on machining deformation
    Li, Xiaoyue
    Li, Liang
    Yang, Yinfei
    Zhao, Guolong
    He, Ning
    Schmidt, Eric
    [J]. JOURNAL OF MANUFACTURING PROCESSES, 2021, 68 : 1072 - 1085
  • [38] Variance-based global sensitivity analysis for fuzzy random structural systems
    Javidan, Mohammad Mahdi
    Kim, Jinkoo
    [J]. COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2019, 34 (07) : 602 - 615
  • [39] Variance-based sensitivity analyses of piezoelectric models
    Lahmer, T.
    Ilg, J.
    Lerch, R.
    [J]. 2015, Tech Science Press (106): : 105 - 126
  • [40] variance-based sensitivity analysis (SA) for the evaluation of margin concepts in radiotherapy
    Mayer, M.
    Hofmaier, J.
    Neppl, S.
    Walter, F.
    Niyazi, K.
    Marnitz-Schulze, S.
    Baues, C.
    Kamp, F.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S514 - S515