Shell-infill composite structure design based on a hybrid explicit- implicit topology optimization method

被引:1
|
作者
Guo, Yilin [1 ]
Liu, Chang [1 ,2 ]
Guo, Xu [1 ,2 ]
机构
[1] Dalian Univ Technol, Int Res Ctr Computat Mech, Dept Engn Mech, State Key Lab Struct Anal Optimizat & CAE Software, Dalian 116023, Peoples R China
[2] Dalian Univ Technol, Ningbo Inst, Ningbo 315016, Peoples R China
关键词
Shell-infill composite structure; Topology optimization; Moving morphable component (MMC); Solid isotropic material with penalization; (SIMP); LEVEL SET METHOD; CHAOS CONTROL;
D O I
10.1016/j.compstruct.2024.118029
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The present paper introduces a hybrid explicit-implicit topology optimization method for shell-infill composite structure design. The proposed approach effectively combines the advantages of the explicit Moving Morphable Component (MMC) method, which describes structural topology only using a set of geometric parameters, and the implicit Solid Isotropic Material with Penalization (SIMP) method, which offers greater design freedom for characterizing the structural features. Compared to the existing methods for shell-infill structure design, the proposed approach can obtain optimized shell-infill structures with complex infill topology without resorting to complex filtering/projection operations. Numerical examples demonstrate the effectiveness of the proposed approach.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] A surrogate-based optimization design method based on hybrid infill sampling criterion
    Li Z.-L.
    Peng S.-S.
    Wang T.
    [J]. Gongcheng Lixue/Engineering Mechanics, 2022, 39 (01): : 27 - 33
  • [22] Lattice infill structure design of topology optimization considering size effect
    Li, Tian
    Sun, Bo
    Gan, Ning
    [J]. MATHEMATICS AND MECHANICS OF SOLIDS, 2023, 28 (04) : 873 - 890
  • [23] The explicit approximation method for design optimization problems with implicit constraints
    Hsu, YL
    Sheppard, SD
    Wilde, DJ
    [J]. ENGINEERING OPTIMIZATION, 1996, 27 (01) : 21 - 42
  • [24] Stress Constrained Topology Optimization for Void-lattice Infill Structure Design
    Sun, Yiding
    Fu, Yun-Fei
    Li, Xinming
    Ma, Yongsheng
    [J]. Computer-Aided Design and Applications, 2025, 22 (02): : 322 - 335
  • [25] Dynamic stiffness design of plate/shell structures using explicit topology optimization
    Li, Baotong
    Huang, Congjia
    Xuan, Chengbin
    Liu, Xin
    [J]. THIN-WALLED STRUCTURES, 2019, 140 : 542 - 564
  • [26] THERMAL TOPOLOGY OPTIMIZATION DESIGN OF SPINDLE STRUCTURE WITH A HYBRID CELLULAR AUTOMATON METHOD
    Deng, Xiaolei
    Wang, Jin
    Shen, Hongcheng
    Zhou, Jinyu
    Wang, Jianchen
    Xie, Changxiong
    Fu, Jianzhong
    [J]. FRONTIERS IN HEAT AND MASS TRANSFER, 2019, 13
  • [27] Topology optimization of composite shell damping structures based on improved optimal criteria method
    Yuan W.
    Gao Z.
    Liu H.
    Miu G.
    [J]. Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2020, 41 (01):
  • [28] Topology optimization design of porous infill structure with thermo-mechanical buckling criteria
    Ning Gan
    Qianxuan Wang
    [J]. International Journal of Mechanics and Materials in Design, 2022, 18 : 267 - 288
  • [29] Design of a Stiffened Space Membrane Structure Using Explicit Topology Optimization
    Wang, Yue
    Zhang, Hua
    Du, Zongliang
    Zhang, Weisheng
    Guo, Xu
    [J]. JOURNAL OF MECHANICAL DESIGN, 2022, 144 (12)
  • [30] Topology optimization design of porous infill structure with thermo-mechanical buckling criteria
    Gan, Ning
    Wang, Qianxuan
    [J]. INTERNATIONAL JOURNAL OF MECHANICS AND MATERIALS IN DESIGN, 2022, 18 (02) : 267 - 288