New constructions of signed difference sets

被引:0
|
作者
He, Zhiwen [1 ]
Chen, Tingting [2 ]
Ge, Gennian [3 ]
机构
[1] Zhejiang Lab, Hangzhou 311100, Peoples R China
[2] Xidian Univ, Inst Math & Interdisciplinary Sci, Xian 710071, Peoples R China
[3] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
基金
中国国家自然科学基金;
关键词
Signed difference set; (ideal) two-level autocorrelation; Partial difference set; Cyclotomic class; SEQUENCES; AUTOCORRELATION;
D O I
10.1007/s10623-024-01389-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Signed difference sets have interesting applications in communications and coding theory. A (v,k,lambda)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(v,k,\lambda )$$\end{document}-difference set in a finite group G of order v is a subset D of G with k distinct elements such that the expressions xy-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xy<^>{-1}$$\end{document} for all distinct two elements x,y is an element of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,y\in D$$\end{document}, represent each non-identity element in G exactly lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} times. A (v,k,lambda)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(v,k,\lambda )$$\end{document}-signed difference set is a generalization of a (v,k,lambda)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(v,k,\lambda )$$\end{document}-difference set D, which satisfies all properties of D, but has a sign for each element in D. We will show some new existence results for signed difference sets by using partial difference sets, product methods, and cyclotomic classes.
引用
收藏
页码:2323 / 2340
页数:18
相关论文
共 50 条
  • [21] Cyclotomic constructions of skew Hadamard difference sets
    Feng, Tao
    Xiang, Qing
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2012, 119 (01) : 245 - 256
  • [22] Two Generalized Constructions of Relative Difference Sets
    Hou, Xiang-Dong
    Sehgal, Surinder K.
    [J]. 1600, Kluwer Academic Publishers (12):
  • [23] Two generalized constructions of relative difference sets
    Hou, XD
    Sehgal, SK
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2000, 12 (02) : 145 - 153
  • [24] Two Generalized Constructions of Relative Difference Sets
    Xiang-Dong Hou
    Surinder K. Sehgal
    [J]. Journal of Algebraic Combinatorics, 2000, 12 : 145 - 153
  • [25] Constructions of partial difference sets and relative difference sets using Galois rings .2.
    Chen, YQ
    RayChaudhuri, DK
    Xiang, Q
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1996, 76 (02) : 179 - 196
  • [26] Constructions of difference sets in nonabelian 2-groups
    Applebaum, T.
    Clikeman, J.
    Davis, J. A.
    Dillon, J. F.
    Jedwab, J.
    Rabbani, T.
    Smith, K.
    Yolland, W.
    [J]. ALGEBRA & NUMBER THEORY, 2023, 17 (02) : 359 - 396
  • [27] Constructions of semi-regular relative difference sets
    Leung, KH
    Ling, S
    Ma, SL
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2001, 7 (03) : 397 - 414
  • [28] Constructions of Nested Partial Difference Sets with Galois Rings
    John B. Polhill
    [J]. Designs, Codes and Cryptography, 2002, 25 : 299 - 309
  • [29] Constructions of nested partial difference sets with Galois rings
    Polhill, JB
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2002, 25 (03) : 299 - 309
  • [30] Constructions of almost difference sets from finite fields
    Ding, Cunsheng
    Pott, Alexander
    Wang, Qi
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2014, 72 (03) : 581 - 592