New constructions of signed difference sets

被引:0
|
作者
He, Zhiwen [1 ]
Chen, Tingting [2 ]
Ge, Gennian [3 ]
机构
[1] Zhejiang Lab, Hangzhou 311100, Peoples R China
[2] Xidian Univ, Inst Math & Interdisciplinary Sci, Xian 710071, Peoples R China
[3] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
基金
中国国家自然科学基金;
关键词
Signed difference set; (ideal) two-level autocorrelation; Partial difference set; Cyclotomic class; SEQUENCES; AUTOCORRELATION;
D O I
10.1007/s10623-024-01389-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Signed difference sets have interesting applications in communications and coding theory. A (v,k,lambda)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(v,k,\lambda )$$\end{document}-difference set in a finite group G of order v is a subset D of G with k distinct elements such that the expressions xy-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xy<^>{-1}$$\end{document} for all distinct two elements x,y is an element of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,y\in D$$\end{document}, represent each non-identity element in G exactly lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} times. A (v,k,lambda)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(v,k,\lambda )$$\end{document}-signed difference set is a generalization of a (v,k,lambda)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(v,k,\lambda )$$\end{document}-difference set D, which satisfies all properties of D, but has a sign for each element in D. We will show some new existence results for signed difference sets by using partial difference sets, product methods, and cyclotomic classes.
引用
收藏
页码:2323 / 2340
页数:18
相关论文
共 50 条
  • [1] NEW CONSTRUCTIONS OF MENON DIFFERENCE SETS
    ARASU, KT
    DAVIS, JA
    JEDWAB, J
    SEHGAL, SK
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1993, 64 (02) : 329 - 336
  • [2] Signed difference sets
    Gordon, Daniel M.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (05) : 2107 - 2115
  • [3] Signed difference sets
    Daniel M. Gordon
    [J]. Designs, Codes and Cryptography, 2023, 91 : 2107 - 2115
  • [4] Some New Constructions of Difference Systems of Sets
    Shen, Shuyu
    Bao, Jingjun
    [J]. GRAPHS AND COMBINATORICS, 2024, 40 (01)
  • [5] Constructions of new families for Supplementary Difference Sets
    Xia, Tianbing
    Zuo, Guoxin
    Xia, Mingyuan
    Seberry, Jennifer
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2023, 85 : 220 - 227
  • [6] New Constructions of Disjoint Distinct Difference Sets
    Chen W.
    Chen Z.
    Kløve T.
    [J]. Designs, Codes and Cryptography, 1998, 15 (2) : 157 - 165
  • [7] Some New Constructions of Difference Systems of Sets
    Shuyu Shen
    Jingjun Bao
    [J]. Graphs and Combinatorics, 2024, 40
  • [8] Constructions of Hadamard difference sets
    Wilson, RM
    Xiang, Q
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1997, 77 (01) : 148 - 160
  • [9] Constructions for difference triangle sets
    Chee, YM
    Colbourn, CJ
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (04) : 1346 - 1349
  • [10] New Constructions of Quantum Stabilizer Codes Based on Difference Sets
    Duc Manh Nguyen
    Kim, Sunghwan
    [J]. SYMMETRY-BASEL, 2018, 10 (11):