Harvesting osmotic energy from proton gradients enabled by two-dimensional Ti3C2Tx MXene membranes

被引:9
|
作者
Qin, Huan [1 ,2 ]
Wu, Haoyu [1 ]
Zeng, Shu-Mao [1 ]
Yi, Fan [2 ]
Qin, Si-Yong [2 ]
Sun, Yue [3 ,4 ]
Ding, Li [1 ]
Wang, Haihui [1 ]
机构
[1] Tsinghua Univ, Dept Chem Engn, Beijing Key Lab Membrane Mat & Engn, Beijing 100084, Peoples R China
[2] South Cent Minzu Univ, Coll Chem & Mat Sci, Hubei Key Lab Catalysis & Mat Sci, Wuhan 430074, Peoples R China
[3] Tiangong Univ, Sch Chem Engn, State Key Lab Separat Membrane & Membrane Proc, Tianjin 300387, Peoples R China
[4] Tiangong Univ, Sch Chem, Tianjin Key Lab Green Chem Technol & Proc Engn, Tianjin 300387, Peoples R China
来源
ADVANCED MEMBRANES | 2022年 / 2卷
关键词
2D MXene membrane; Energy conversion; Proton transport; Osmotic energy harvesting; Acidic wastewater; PRESSURE RETARDED OSMOSIS; POWER-GENERATION; ION-TRANSPORT; OPPORTUNITIES; PRINCIPLES; CONVERSION;
D O I
10.1016/j.advmem.2022.100046
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Osmotic energy is a kind of blue energy that has recently been identified as an additional source of clean energy. Using a membrane-based reverse electrodialysis (RED) process, this blue energy can be obtained from acidic industrial wastewater with different proton concentration gradients. However, this process demands highperformance membrane that can withstand harsh environments, possessing the advantages of wide pH tolerance, high-temperature resistance and chemical stability, developing such membranes remain a challenge. Herein, we report a two-dimensional (2D) lamellar Ti3C2Tx MXene membrane-based RED device for osmotic energy capturing from proton gradients. Such a membrane exhibits a typical surface-charge-governed ion transport feature. Moreover, the MXene membrane-based energy harvesting device holds the merits of outstanding pH and temperature resistance. It exhibits an output power density of 6.5 W/m2 and also demonstrates stability over 200 h at pH 1/4 0, which is 30% higher than the commercialization benchmark (5 W/m2). The osmotic power density can be further enhanced to 11.1 W/m2 at 330 K, demonstrating excellent thermal and chemical stability. This work can help better understand protons' transport behaviors in MXene membranes and open new avenues for applications in sustainable power conversion and wastewater treatment.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Tracking the thermal dynamics of Ti3C2Tx MXene with XPS and two-dimensional correlation spectroscopy
    Eom, Wonsik
    Shin, Hwansoo
    Han, Tae Hee
    APPLIED PHYSICS LETTERS, 2023, 122 (21)
  • [22] Two-dimensional Ti3C2Tx MXene nanosheets for CO2 electroreduction in aqueous electrolytes
    Krishnan, Sarathkumar
    Marimuthu, Senthilkumaran
    Singh, Mayank K.
    Rai, Dhirendra K.
    ENERGY ADVANCES, 2023, 2 (08): : 1166 - 1175
  • [23] Design of Functional Ti3C2Tx MXene for Gas Sensors and Energy Harvesting: A Review
    Ta, Qui Thanh Hoai
    Thakur, Deepika
    Noh, Jin-Seo
    CHEMOSENSORS, 2023, 11 (09)
  • [24] Intercalation and delamination of two-dimensional MXene (Ti3C2Tx) and application in sodium-ion batteries
    Lv, Guoxia
    Wang, Jing
    Shi, Zhiqiang
    Fan, Liping
    MATERIALS LETTERS, 2018, 219 : 45 - 50
  • [25] Electrochemical performance of self-assembled two-dimensional Ti3C2Tx(MXene) thin films
    Wu W.
    Wang E.-H.
    Yang T.
    Hou X.-M.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2021, 43 (06): : 808 - 815
  • [26] Reductive Sequestration of Toxic Bromate from Drinking Water using Lamellar Two-Dimensional Ti3C2TX (MXene)
    Pandey, Ravi P.
    Rasool, Kashif
    Rasheed, P. Abdul
    Mahmoud, Khaled A.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (06): : 7910 - 7917
  • [27] Ti3C2Tx MXene compounds for electrochemical energy storage
    Ferrara, Chiara
    Gentile, Antonio
    Marchionna, Stefano
    Ruffo, Riccardo
    CURRENT OPINION IN ELECTROCHEMISTRY, 2021, 29
  • [28] Hierarchical utilization of raw Ti3C2Tx MXene for fast preparation of various Ti3C2Tx MXene derivatives
    Shunlong Zhang
    Hangjun Ying
    Pengfei Huang
    Tiantian Yang
    Wei-Qiang Han
    Nano Research, 2022, 15 : 2746 - 2755
  • [29] Hierarchical utilization of raw Ti3C2Tx MXene for fast preparation of various Ti3C2Tx MXene derivatives
    Zhang, Shunlong
    Ying, Hangjun
    Huang, Pengfei
    Yang, Tiantian
    Han, Wei-Qiang
    NANO RESEARCH, 2022, 15 (03) : 2746 - 2755
  • [30] Two-dimensional lithium-intercalated Ti3C2Tx MXene for highly selective neodymium (III) adsorption
    Cai, Hui
    Rong, Meng
    Meng, Qiyu
    Liu, Zhiqian
    Zhao, Yue
    Chen, Congmei
    Yang, Liangrong
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 331