Long-term electrical energy demand forecasting by using artificial intelligence/machine learning techniques

被引:2
|
作者
Ozdemir, Gulcihan [1 ]
机构
[1] Istanbul Tech Univ, Informat Inst, Ayazaga Campus, TR-34469 Maslak, Istanbul, Turkiye
关键词
Electrical energy forecasting; Energy modeling; ANNs; ANFIS; ML; Metaheuristic algorithms; Evolutionary algorithms; Data analysis; PARTICLE SWARM OPTIMIZATION; NEURAL-NETWORK; SEASONAL ARIMA; CONSUMPTION; MODELS; IMPROVEMENT; ALGORITHM; TURKEY;
D O I
10.1007/s00202-024-02364-1
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Forecasting of long-term annual electricity demand is studied utilizing historical data for electrical energy consumption and socio-economic indicators-gross domestic product, population, import and export values for the case of Turkey between 1975 and 2020. A quadratic model for electrical energy consumption was applied to define the relation between the historical and predicted data. This model used metaheuristic algorithms; genetic algorithms (GA), differential evolution (DE), particle swarm optimization (PSO), artificial intelligence (AI) approaches; neural networks (NN), and adaptive network fuzzy inference systems (ANFIS), and machine learning (ML) applications; all models undergo testing, but the top four models-stepwise linear regression (SLR), NN, Gaussian process regression (GPR) with exponential, and GPR with squared exponential-are selected for additional research to determine the best forecasting model based on their forecasting performance. Comparing the finalized models SLR produced the best forecasting model with a mean absolute percentage error (MAPE) value of 2.36%, followed by GA with 2.97%. Turkey's yearly electrical energy consumption is projected under three possible scenarios through 2030. Finding the most appropriate forecasting model among the models studied for long-term electrical energy forecasting is ultimately the primary goal of this research. Simulations are done on the MATLAB (TM) platform.
引用
收藏
页码:5229 / 5251
页数:23
相关论文
共 50 条
  • [41] Comparison of the long-term forecasting method of RSSI by machine learning
    Nagao, Tatsuya
    Hayashi, Takahiro
    Amano, Yoshiaki
    IEICE COMMUNICATIONS EXPRESS, 2020, 9 (11): : 553 - 558
  • [42] Machine Learning of Forecasting Long-Term Economic Crisis in Indonesia
    Sa'adah, Siti
    Liong, The Houw
    Adiwijaya
    2013 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER SCIENCE AND INFORMATION SYSTEMS (ICACSIS), 2013, : 261 - 266
  • [43] Application of Statistical and Artificial Intelligence Techniques for Medium-Term Electrical Energy Forecasting: A Case Study for a Regional Hospital
    Timur, Oguzhan
    Zor, Kasim
    Celik, Ozgur
    Teke, Ahmet
    Ibrikci, Turgay
    JOURNAL OF SUSTAINABLE DEVELOPMENT OF ENERGY WATER AND ENVIRONMENT SYSTEMS-JSDEWES, 2020, 8 (03): : 520 - 536
  • [44] Effective Demand Forecasting Model Using Business Intelligence Empowered With Machine Learning
    Khan, Muhammad Adnan
    Saqib, Shazia
    Alyas, Tahir
    Rehman, Anees Ur
    Saeed, Yousaf
    Zeb, Asim
    Zareei, Mahdi
    Mohamed, Ehab Mahmoud
    IEEE ACCESS, 2020, 8 : 116013 - 116023
  • [45] Long-term forecast of energy commodities price using machine learning
    Herrera, Gabriel Paes
    Constantino, Michel
    Tabak, Benjamin Miranda
    Pistori, Hemerson
    Su, Jen-Je
    Naranpanawa, Athula
    ENERGY, 2019, 179 : 214 - 221
  • [46] Review on the Application of Photovoltaic Forecasting Using Machine Learning for Very Short- to Long-Term Forecasting
    Radzi, Putri Nor Liyana Mohamad
    Akhter, Muhammad Naveed
    Mekhilef, Saad
    Shah, Noraisyah Mohamed
    SUSTAINABILITY, 2023, 15 (04)
  • [47] Forecasting long term tunnel longitudinal settlement and horizontal convergence using machine learning techniques
    Sarna, S.
    Gutierrez, M.
    Zhu, M.
    PROCEEDINGS OF THE ITA-AITES WORLD TUNNEL CONGRESS 2023, WTC 2023: Expanding Underground-Knowledge and Passion to Make a Positive Impact on the World, 2023, : 2885 - 2892
  • [48] Wind Energy Forecasting with Artificial Intelligence Techniques: A Review
    Maldonado-Correa, Jorge
    Valdiviezo, Marcelo
    Solano, Juan
    Rojas, Marco
    Samaniego-Ojeda, Carlos
    APPLIED TECHNOLOGIES (ICAT 2019), PT II, 2020, 1194 : 348 - 362
  • [49] Predicting Long-Term Mortality in TAVI Patients Using Machine Learning Techniques
    Penso, Marco
    Pepi, Mauro
    Fusini, Laura
    Muratori, Manuela
    Cefalu, Claudia
    Mantegazza, Valentina
    Gripari, Paola
    Ali, Sarah Ghulam
    Fabbiocchi, Franco
    Bartorelli, Antonio L.
    Caiani, Enrico G.
    Tamborini, Gloria
    JOURNAL OF CARDIOVASCULAR DEVELOPMENT AND DISEASE, 2021, 8 (04)
  • [50] An Experimental Machine Learning Approach for Mid-Term Energy Demand Forecasting
    Yan, Shu-Rong
    Tian, Manwen
    Alattas, Khalid A. A.
    Mohamadzadeh, Ardashir
    Sabzalian, Mohammad Hosein
    Mosavi, Amir H. H.
    IEEE ACCESS, 2022, 10 : 118926 - 118940