Engineering immune-evasive allogeneic cellular immunotherapies

被引:13
|
作者
Martin, Karen E. [1 ,2 ]
Hammer, Quirin [3 ]
Perica, Karlo [4 ,5 ]
Sadelain, Michel [4 ]
Malmberg, Karl-Johan [1 ,2 ,3 ]
机构
[1] Univ Oslo, Precis Immunotherapy Alliance, Oslo, Norway
[2] Oslo Univ Hosp, Inst Canc Res Oslo, Dept Canc Immunol, Oslo, Norway
[3] Karolinska Inst, Ctr Infect Med, Dept Med Huddinge, Stockholm, Sweden
[4] Mem Sloan Kettering Canc Ctr, Ctr Cell Engn, New York, NY USA
[5] Mem Sloan Kettering Canc Ctr, Dept Med, Cell Therapy Serv, New York, NY USA
基金
瑞典研究理事会; 欧盟地平线“2020”;
关键词
NATURAL-KILLER-CELLS; DONOR-SPECIFIC ANTIBODIES; HUMANIZED MOUSE MODELS; CLASS-I EXPRESSION; CAR-T-CELLS; HLA-E; ADOPTIVE IMMUNOTHERAPY; SURFACE EXPRESSION; NK CELLS; ANTIGEN PRESENTATION;
D O I
10.1038/s41577-024-01022-8
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Allogeneic cellular immunotherapies hold a great promise for cancer treatment owing to their potential cost-effectiveness, scalability and on-demand availability. However, immune rejection of adoptively transferred allogeneic T and natural killer (NK) cells is a substantial obstacle to achieving clinical responses that are comparable to responses obtained with current autologous chimeric antigen receptor T cell therapies. In this Perspective, we discuss strategies to confer cell-intrinsic, immune-evasive properties to allogeneic T cells and NK cells in order to prevent or delay their immune rejection, thereby widening the therapeutic window. We discuss how common viral and cancer immune escape mechanisms can serve as a blueprint for improving the persistence of off-the-shelf allogeneic cell therapies. The prospects of harnessing genome editing and synthetic biology to design cell-based precision immunotherapies extend beyond programming target specificities and require careful consideration of innate and adaptive responses in the recipient that may curtail the biodistribution, in vivo expansion and persistence of cellular therapeutics. Genome editing approaches can be used to confer immune-evasive properties to allogeneic cellular immunotherapies, with the aim of achieving persistent responses and efficiencies that are comparable to those of autologous chimeric antigen receptor T cell therapies. This Perspective discusses how current knowledge about viral or tumour immune evasion could be incorporated into the design of off-the-shelf tumour-specific T and NK cells for the production of cost-effective and scalable cancer immunotherapies.
引用
收藏
页码:680 / 693
页数:14
相关论文
共 50 条
  • [41] EVI1 promotes immune-evasive microenvironment via cyclin D1 in acute myeloid leukemia
    Masamoto, Yosuke
    Mizuno, Hideaki
    Kurokawa, Mineo
    CANCER SCIENCE, 2023, 114 : 290 - 290
  • [42] Rapid and Long-Term Glycemic Regulation with a Balanced Charged Immune-Evasive Hydrogel in T1DM Mice
    Zhang, Jiamin
    Zhu, Yingnan
    Song, Jiayin
    Xu, Tong
    Yang, Jing
    Du, Yan
    Zhang, Lei
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (19)
  • [43] Pooled Knock-In Targeting for Genome Engineering of Cellular Immunotherapies
    Roth, Theodore
    Marson, Alexander
    MOLECULAR THERAPY, 2020, 28 (04) : 16 - 17
  • [44] Enhancing cellular immunotherapies in cancer by engineering selective therapeutic resistance
    Wellhausen, Nils
    Baek, Joanne
    Gill, Saar I.
    June, Carl H.
    NATURE REVIEWS CANCER, 2024, 24 (09) : 614 - 628
  • [45] The Epstein-Barr Virus Glycoprotein gp150 Forms an Immune-Evasive Glycan Shield at the Surface of Infected Cells
    Gram, Anna M.
    Oosenbrug, Timo
    Lindenbergh, Marthe F. S.
    Bull, Christian
    Comvalius, Anouskha
    Dickson, Kathryn J. I.
    Wiegant, Joop
    Vrolijk, Hans
    Lebbink, Robert Jan
    Wolterbeek, Ron
    Adema, Gosse J.
    Griffioen, Marieke
    Heemskerk, Mirjam H. M.
    Tscharke, David C.
    Hutt-Fletcher, Lindsey M.
    Wiertz, Emmanuel J. H. J.
    Hoeben, Rob C.
    Ressing, Maaike E.
    PLOS PATHOGENS, 2016, 12 (04)
  • [46] Improved Cellular Immunotherapies based on T Cell Receptor Engineering
    Koya, Richard
    CANCER SCIENCE, 2018, 109 : 534 - 534
  • [47] Genetic Engineering of Immune Evasive Stem Cell-Derived Islets
    Sackett, Sara D.
    Kaplan, Samuel J.
    Mitchell, Samantha A.
    Brown, Matthew E.
    Burrack, Adam L.
    Grey, Shane
    Huangfu, Danwei
    Odorico, Jon
    TRANSPLANT INTERNATIONAL, 2022, 35
  • [48] Cellular immunotherapies
    Hallek, Michael
    INTERNIST, 2021, 62 (06): : 581 - 582
  • [49] Acquired resistance to anti-MAPK targeted therapy confers an immune-evasive tumor microenvironment and cross-resistance to immunotherapy in melanoma
    Lisa Haas
    Anais Elewaut
    Camille L. Gerard
    Christian Umkehrer
    Lukas Leiendecker
    Malin Pedersen
    Izabela Krecioch
    David Hoffmann
    Maria Novatchkova
    Mario Kuttke
    Tobias Neumann
    Ines Pires da Silva
    Harriet Witthock
    Michel A. Cuendet
    Sebastian Carotta
    Kevin J. Harrington
    Johannes Zuber
    Richard A. Scolyer
    Georgina V. Long
    James S. Wilmott
    Olivier Michielin
    Sakari Vanharanta
    Thomas Wiesner
    Anna C. Obenauf
    Nature Cancer, 2021, 2 : 693 - 708
  • [50] Acquired resistance to anti-MAPK targeted therapy confers an immune-evasive tumor microenvironment and cross-resistance to immunotherapy in melanoma
    Haas, Lisa
    Elewaut, Anais
    Gerard, Camille L.
    Umkehrer, Christian
    Leiendecker, Lukas
    Pedersen, Malin
    Krecioch, Izabela
    Hoffmann, David
    Novatchkova, Maria
    Kuttke, Mario
    Neumann, Tobias
    da Silva, Ines Pires
    Witthock, Harriet
    Cuendet, Michel A.
    Carotta, Sebastian
    Harrington, Kevin J.
    Zuber, Johannes
    Scolyer, Richard A.
    Long, Georgina, V
    Wilmott, James S.
    Michielin, Olivier
    Vanharanta, Sakari
    Wiesner, Thomas
    Obenauf, Anna C.
    NATURE CANCER, 2021, 2 (07) : 693 - +