Stochastic reconstruction of fracture network pattern using spatial point processes

被引:0
|
作者
Shakiba, Mahmood [1 ]
Lake, Larry W. [1 ]
Gale, Julia F. W. [2 ]
Laubach, Stephen E. [2 ]
Pyrcz, Michael J. [1 ,2 ,3 ]
机构
[1] Univ Texas Austin, Hildebrand Dept Petr & Geosyst Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Jackson Sch Geosci, Bur Econ Geol, Austin, TX USA
[3] Univ Texas Austin, Jackson Sch Geosci, Dept Geol Sci, Austin, TX USA
来源
关键词
FLOW SIMULATION; FLUID-FLOW; MODEL; OPTIMIZATION; RESERVOIR; SHALE; IMPLEMENTATION; PHOTOGRAMMETRY; INTEGRATION; SOFTWARE;
D O I
10.1016/j.geoen.2024.212741
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Fracture spatial patterns can strongly affect fluid flow in the subsurface. Proximity and distribution of fractures control reservoir flow behavior over various length scales. In many studies, however, simplified geometrical patterns are generated for fractures which may lead to unrealistic subsurface models. Here we introduce a new method for characterization and modeling of fracture spatial patterns based on outcrop observations. We use Ripley ' s K -function to characterize the arrangement of fracture barycenters and intersection points over various length scales. In addition, we use semivariograms to quantify spatial correlation in fracture intensity maps. Using this information, we develop a stochastic algorithm that generates two-dimensional fracture network realizations with spatial properties similar to those of a real fracture network measured in the field. Numerical simulation models indicate that the generated fracture realizations exhibit similar flow behaviors as that of the original fracture network. Such modeling tools expand and improve our capability in building representative fracture models and in quantification of uncertainty in naturally and hydraulically fractured reservoirs.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Isotropy test for spatial point processes using stochastic reconstruction
    Wong, Ka Yiu
    Chiu, Sung Nok
    [J]. SPATIAL STATISTICS, 2016, 15 : 56 - 69
  • [2] Using a Discrete Fracture Network and Spatial Point Processes to Populate Veins and Model Grade in a Coarse Gold Deposit
    C. R. Mooney
    J. B. Boisvert
    [J]. Natural Resources Research, 2016, 25 : 255 - 268
  • [3] Using a Discrete Fracture Network and Spatial Point Processes to Populate Veins and Model Grade in a Coarse Gold Deposit
    Mooney, C. R.
    Boisvert, J. B.
    [J]. NATURAL RESOURCES RESEARCH, 2016, 25 (03) : 255 - 268
  • [4] STOCHASTIC-APPROXIMATION OF THE MLE FOR A SPATIAL POINT PATTERN
    MOYEED, RA
    BADDELEY, AJ
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 1991, 18 (01) : 39 - 50
  • [5] A Spatial Clustering Approach for Stochastic Fracture Network Modelling
    Seifollahi, S.
    Dowd, P. A.
    Xu, C.
    Fadakar, A. Y.
    [J]. ROCK MECHANICS AND ROCK ENGINEERING, 2014, 47 (04) : 1225 - 1235
  • [6] A Spatial Clustering Approach for Stochastic Fracture Network Modelling
    S. Seifollahi
    P. A. Dowd
    C. Xu
    A. Y. Fadakar
    [J]. Rock Mechanics and Rock Engineering, 2014, 47 : 1225 - 1235
  • [7] Gibbs point processes for studying the development of spatial-temporal stochastic processes
    Renshaw, E
    Särkkä, A
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2001, 36 (01) : 85 - 105
  • [8] Geometric Anisotropic Spatial Point Pattern Analysis and Cox Processes
    Moller, Jesper
    Toftaker, Hakon
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2014, 41 (02) : 414 - 435
  • [9] Multiscale spatial analysis of fracture arrangement and pattern reconstruction using Ripley's K-function
    Shakiba, Mahmood
    Lake, Larry W.
    Gale, Julia F.W.
    Pyrcz, Michael J.
    [J]. Journal of Structural Geology, 2022, 155
  • [10] Multiscale spatial analysis of fracture arrangement and pattern reconstruction using Ripley's K-function
    Shakiba, Mahmood
    Lake, Larry W.
    Gale, Julia F. W. J.
    Pyrcz, Michael
    [J]. JOURNAL OF STRUCTURAL GEOLOGY, 2022, 155