Geometric Anisotropic Spatial Point Pattern Analysis and Cox Processes

被引:23
|
作者
Moller, Jesper [1 ]
Toftaker, Hakon [2 ]
机构
[1] Aalborg Univ, Dept Math Sci, Aalborg, Denmark
[2] Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway
关键词
K-function; Bayesian inference; shot noise Cox process; spectral density; Whittle-Matern covariance function; log Gaussian Cox process; second-order intensity-reweighted stationarity; minimum contrast estimation; pair correlation function; SPECTRAL-ANALYSIS; STATISTICS;
D O I
10.1111/sjos.12041
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider spatial point processes with a pair correlation function, which depends only on the lag vector between a pair of points. Our interest is in statistical models with a special kind of 'structured' anisotropy: the pair correlation function is geometric anisotropic if it is elliptical but not spherical. In particular, we study Cox process models with an elliptical pair correlation function, including shot noise Cox processes and log Gaussian Cox processes, and we develop estimation procedures using summary statistics and Bayesian methods. Our methodology is illustrated on real and synthetic datasets of spatial point patterns.
引用
收藏
页码:414 / 435
页数:22
相关论文
共 50 条
  • [1] Multivariate geometric anisotropic Cox processes
    Martin, James S.
    Murrell, David J.
    Olhede, Sofia C.
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2023, 50 (03) : 1420 - 1465
  • [2] Second order analysis of geometric anisotropic point processes revisited
    Sormani, M.
    Redenbach, C.
    Sarkka, A.
    Rajala, T.
    [J]. SPATIAL STATISTICS, 2020, 38
  • [3] On new families of anisotropic spatial log-Gaussian Cox processes
    Fariba Nasirzadeh
    Zohreh Shishebor
    Jorge Mateu
    [J]. Stochastic Environmental Research and Risk Assessment, 2021, 35 : 183 - 213
  • [4] On new families of anisotropic spatial log-Gaussian Cox processes
    Nasirzadeh, Fariba
    Shishebor, Zohreh
    Mateu, Jorge
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2021, 35 (02) : 183 - 213
  • [5] BIVARIATE COX PROCESSES - SOME MODELS FOR BIVARIATE SPATIAL POINT PATTERNS
    DIGGLE, PJ
    MILNE, RK
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1983, 45 (01) : 11 - 21
  • [6] Analysis of a spatial point pattern in relation to a reference point
    Sadahiro, Yukio
    Matsumoto, Hidetaka
    [J]. JOURNAL OF GEOGRAPHICAL SYSTEMS, 2024, 26 (03) : 351 - 373
  • [7] Residual analysis for spatial point processes
    Baddeley, A
    Turner, R
    Moller, J
    Hazelton, M
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2005, 67 : 617 - 651
  • [8] Identifying Activation Centers with Spatial Cox Point Processes Using fMRI Data
    Ray, Meredith
    Kang, Jian
    Zhang, Hongmei
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2016, 13 (06) : 1130 - 1141
  • [9] INHOMOGENEITY IN SPATIAL COX POINT PROCESSES - LOCATION DEPENDENT THINNING IS NOT THE ONLY OPTION
    Prokesova, Michaela
    [J]. IMAGE ANALYSIS & STEREOLOGY, 2010, 29 (03): : 133 - 141
  • [10] Spatial point pattern analysis and industry concentration
    Reinhold Kosfeld
    Hans-Friedrich Eckey
    Jørgen Lauridsen
    [J]. The Annals of Regional Science, 2011, 47 : 311 - 328