Optimization of biomethane production from lignocellulosic biomass by a developed microbial consortium

被引:4
|
作者
Ali, Shehbaz [1 ,2 ,3 ,4 ]
Dar, Mudasir A. [1 ,2 ,3 ]
Liaqat, Fakhra [1 ,2 ,3 ]
Sethupathy, Sivasamy [1 ,2 ,3 ]
Rani, Abida [5 ]
Khan, Mohammad Ilyas [6 ]
Rehan, Mohammad [7 ]
Zhu, Daochen [1 ,2 ,3 ]
机构
[1] Jiangsu Univ, Biofuels Inst, Sch Environm & Safety Engn, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Jiangsu Univ, Int Joint Lab Synthet Biol & Biomass Biorefinery, Zhenjiang, Peoples R China
[3] Suzhou Univ Sci & Technol, Jiangsu Collaborat Innovat Ctr Technol & Mat Water, Suzhou 215009, Peoples R China
[4] Natl Inst Biotechnol & Genet Engn, Ind Biotechnol Div, Faisalabad, Pakistan
[5] Bahauddin Zakariya Univ, Fac Pharm, Dept Pharmaceut Chem, Multan, Pakistan
[6] King Khalid Univ, Coll Engn, Chem Engn Dept, Abha, Saudi Arabia
[7] King Abdulaziz Univ, Ctr Excellence Environm Studies CEES, Jeddah, Saudi Arabia
关键词
Lignocellulosic biomass; Anaerobic digestion; Volatile fatty acids; Biomethane potential; Mathematical Modelling; ANAEROBIC CO-DIGESTION; RICE STRAW; WHEAT-STRAW; BIOGAS PRODUCTION; METHANE PRODUCTION; PRETREATMENT; FRACTIONATION; ENERGY;
D O I
10.1016/j.psep.2024.02.037
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Biomethane production from lignocellulosic biomass via anaerobic digestion (AD) is a promising avenue for bioenergy. However, maximizing biomethane yield using developed microbial consortium (DMC) remains a complex challenge. This study aims to elucidate the comparative efficacy of a purposefully DMC under controlled conditions for AD of kallar grass (KG), rice husk (RH) and wheat residue (WR). The DMC encompasses Bacteroidetes, Firmicutes, Proteobacteria, Euryarchaeota, and Chloroflexi, with methanogens representing 14.6% of the community. Thorough physico-chemical characteristics and ultimate analyses provided comprehensive insights into compositions and bio-methane potentials prediction of biomasses. The digester revealed higher biomethane potentials (BMPs) with short lag phase and retention time and showed methane content of 61-64.6% during the first week of AD. The amount of volatile fatty acids (VFA) did not exceed the threshold levels, which facilitated the smooth operation of AD. The BMP was found highest in KG (289.7 mL/g VS), followed by RH (283.3 mL/g VS), and WR (269.7 mL/g VS) which is significantly higher than previously reported studies. The modified Gompertz model showed the best fit, followed by logistic and transference function models. The observed results signpost the tremendous potential of waste biomass particularly KG, RH and WR to produce biomethane by DMC. This study provides crucial insights for optimizing BMP emphasizing the promising prospects of KG, RH, and WR for sustainable bioenergy applications.
引用
收藏
页码:1106 / 1118
页数:13
相关论文
共 50 条
  • [11] Efficient Bioethanol Production from Lignocellulosic Biomass Using Diverse Microbial Strains
    Bendaoud, Ahmed
    Belkhiri, Abdelkhalek
    Hmamou, Anouar
    Tlemcani, Sara
    Eloutassi, Noureddine
    Lahkimi, Amal
    JOURNAL OF ECOLOGICAL ENGINEERING, 2024, 25 (10): : 353 - 362
  • [12] Optimization of simultaneous saccharification and fermentation for the production of ethanol from lignocellulosic biomass
    Krishna, SH
    Chowdary, GV
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2000, 48 (05) : 1971 - 1976
  • [13] Microbial Oil Production from Lignocellulosic Biomass-Recent Development and Prospect
    Lin, Zhangnan
    Liu, Hongjuan
    Wang, Zhiqin
    Zhang, Jianan
    ENGINEERING AND MANUFACTURING TECHNOLOGIES, 2014, 541-542 : 397 - +
  • [14] Microbial biodiesel production from lignocellulosic biomass: New insights and future challenges
    Uthandi, Sivakumar
    Kaliyaperumal, Ashokkumar
    Srinivasan, Naganandhini
    Thangavelu, Kiruthika
    Muniraj, Iniya Kumar
    Zhan, Xinmin
    Gathergood, Nicholas
    Gupta, Vijai Kumar
    CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2022, 52 (12) : 2197 - 2225
  • [15] Microbial co-cultures for biochemicals production from lignocellulosic biomass: A review
    Llamas, Mercedes
    Greses, Silvia
    Magdalena, Jose Antonio
    Gonzalez-Fernandez, Cristina
    Tomas-Pejo, Elia
    BIORESOURCE TECHNOLOGY, 2023, 386
  • [16] Biomethane production from starch and lignocellulosic crops: a comparative review
    Frigon, Jean-Claude
    Guiot, Serge R.
    BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2010, 4 (04): : 447 - 458
  • [17] Ethanol production from lignocellulosic biomass
    Ogier, J.-C.
    Ballerini, D.
    Leygue, J.-P.
    Rigal, L.
    Pourquié, J.
    Revue de l'Institute Francais du Petrole, 1999, 54 (01): : 67 - 94
  • [18] Ethanol production from lignocellulosic biomass
    Ogier, JC
    Ballerini, D
    Leygue, JP
    Rigal, L
    Pourquié, J
    OIL & GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES, 1999, 54 (01): : 67 - 94
  • [19] Biodiesel production from lignocellulosic biomass
    Santek, Mirela Ivancic
    Slavica, Anita
    Beluhan, Suncica
    Santek, Bozidar
    JOURNAL OF BIOTECHNOLOGY, 2017, 256 : S16 - S16
  • [20] Degradation of lignin in different lignocellulosic biomass by steam explosion combined with microbial consortium treatment
    Zhang, Wen
    Diao, Chenyang
    Wang, Lei
    BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS, 2023, 16 (01):