A syntactic features and interactive learning model for aspect-based sentiment analysis

被引:5
|
作者
Zou, Wang [1 ]
Zhang, Wubo [1 ]
Tian, Zhuofeng [2 ]
Wu, Wenhuan [1 ,3 ]
机构
[1] Hubei Univ Automot Technol, Sch Elect & Informat Engn, Shiyan 442002, Peoples R China
[2] Wuhan Univ Sci & Technol, Sch Grammar & Econ, Wuhan 430000, Peoples R China
[3] Xian Univ Technol, Sch Comp Sci & Engn, Xian 710048, Peoples R China
关键词
Error propagation; Multi-word aspect terms; Dependency features; Interactive learning;
D O I
10.1007/s40747-024-01449-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The aspect-based sentiment analysis (ABSA) consists of two subtasks: aspect term extraction (AE) and aspect term sentiment classification (ASC). Previous research on the AE task has not adequately leveraged syntactic information and has overlooked the issue of multi-word aspect terms in text. Current researchers tend to focus on one of the two subtasks, neglecting the connection between the AE and ASC tasks. Moreover, the problem of error propagation easily occurs between two independent subtasks when performing the complete ABSA task. To address these issues, we present a unified ABSA model based on syntactic features and interactive learning. The proposed model is called syntactic interactive learning based aspect term sentiment classification model (SIASC). To overcome the problem of extracting multi-word aspect terms, the model utilizes part-of-speech features, words features, and dependency features as textual information. Meanwhile, we designs a unified ABSA structure based on the end-to-end framework, reducing the impact of error propagation issues. Interaction learning in the model can establish a connection between the AE task and the ASC task. The information from interactive learning contributes to improving the model's performance on the ASC task. We conducted an extensive array of experiments on the Laptop14, Restaurant14, and Twitter datasets. The experimental results show that the SIASC model achieved average accuracy of 84.11%, 86.65%, and 78.42% on the AE task, respectively. Acquiring average accuracy of 81.35%, 86.71% and 76.56% on the ASC task, respectively. The SIASC model demonstrates superior performance compared to the baseline model.
引用
收藏
页码:5359 / 5377
页数:19
相关论文
共 50 条
  • [31] Interactive Double Graph Convolutional Networks for Aspect-based Sentiment Analysis
    Wang, Xue
    Liu, Peiyu
    Zhu, Zhenfang
    Lu, Ran
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [32] Aspect-based sentiment analysis using adaptive aspect-based lexicons
    Mowlaei, Mohammad Erfan
    Abadeh, Mohammad Saniee
    Keshavarz, Hamidreza
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 148
  • [33] Aspect-Based Financial Sentiment Analysis using Deep Learning
    Jangid, Hitkul
    Singhal, Shivangi
    Shah, Rajiv Ratn
    Zimmermann, Roger
    COMPANION PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2018 (WWW 2018), 2018, : 1961 - 1966
  • [34] Semi-Supervised Learning for Aspect-Based Sentiment Analysis
    Zheng, Hang
    Zhang, Jianhui
    Suzuki, Yoshimi
    Fukumoto, Fumiyo
    Nishizaki, Hiromitsu
    2021 INTERNATIONAL CONFERENCE ON CYBERWORLDS (CW 2021), 2021, : 209 - 212
  • [35] Few-Shot Learning for Aspect-Based Sentiment Analysis
    Ruan, Heng
    Li, Xiaoge
    Li, Xianliang
    Jiang, Huikai
    Li, Yingchao
    ADVANCES IN NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, ICNC-FSKD 2022, 2023, 153 : 1146 - 1157
  • [36] Syntactic and Semantic Enhanced Text Generation Model for Aspect-based Sentiment Triplet Extraction
    Wei, Xin
    Lv, Chengguo
    2024 5TH INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKS AND INTERNET OF THINGS, CNIOT 2024, 2024, : 545 - 552
  • [37] Aspect-Based Sentiment Analysis: A Survey of Deep Learning Methods
    Liu, Haoyue
    Chatterjee, Ishani
    Zhou, MengChu
    Lu, Xiaoyu Sean
    Abusorrah, Abdullah
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2020, 7 (06): : 1358 - 1375
  • [38] Learning Polarity Embedding Attention for Aspect-based Sentiment Analysis
    Wadawadagi, Ramesh
    Hatture, Sanjeevakumar M.
    Pagi, Veerappa
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2024, 33 (01)
  • [39] Aspect-Pair Supervised Contrastive Learning for aspect-based sentiment analysis
    Li, Pan
    Li, Ping
    Xiao, Xiao
    KNOWLEDGE-BASED SYSTEMS, 2023, 274
  • [40] Aspect-Based Sentiment Analysis of Vietnamese Texts with Deep Learning
    Long Mai
    Bac Le
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2018, PT I, 2018, 10751 : 149 - 158