CALCULUS OF VARIATIONS WITH STRONG NONLINEARITY

被引:0
|
作者
丁夏畦
罗佩珠
顾永耕
方惠中
机构
[1] Institute of Mathematics
[2] Academia Sinica
[3] Academia
关键词
D O I
暂无
中图分类号
学科分类号
摘要
<正> This paper presents a solution of the variational problem with strong nonlinearity where μ(t) is increasing, L(x)∈L1, φ(v) is any integral function. Using the trace theorem deduced in [1], and by a procedure of Ritz's type, we solved the above problem proposed by O. A. in [5].
引用
收藏
页码:945 / 955
页数:11
相关论文
共 50 条
  • [21] Strong normalisation in the π-calculus
    Yoshida, N
    Berger, M
    Honda, K
    INFORMATION AND COMPUTATION, 2004, 191 (02) : 145 - 202
  • [22] Strong normalisation in the π-calculus
    Yoshida, N
    Berger, M
    Honda, K
    16TH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 2001, : 311 - 322
  • [23] Complex calculus of variations
    Gondran, M
    Hoblos, R
    SYSTEM STRUCTURE AND CONTROL 2001, VOLS 1 AND 2, 2001, : 727 - 730
  • [24] A method in the calculus of variations
    Robbins, RB
    AMERICAN JOURNAL OF MATHEMATICS, 1915, 37 : 367 - 394
  • [25] Discrete calculus of variations
    Guseinov, GS
    GLOBAL ANALYSIS AND APPLIED MATHEMATICS, 2004, 729 : 170 - 176
  • [26] Infinitesimal calculus of variations
    Nishimura, H
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1999, 38 (06) : 1771 - 1782
  • [27] Complex calculus of variations
    Gondran, M
    Saade, RH
    KYBERNETIKA, 2003, 39 (02) : 249 - 263
  • [28] THE CALCULUS OF VARIATIONS TODAY
    HILDEBRANDT, S
    SHENITZER, A
    MATHEMATICAL INTELLIGENCER, 1989, 11 (04): : 50 - 60
  • [29] On the foundations of calculus of variations
    Busemann, Herbert
    Mayer, Walther
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1941, 49 (1-3) : 173 - 198
  • [30] DISCRETE CALCULUS OF VARIATIONS
    CADZOW, JA
    INTERNATIONAL JOURNAL OF CONTROL, 1970, 11 (03) : 393 - +