On Semilattice Decomposition of an Abel–Grassmann’s Groupoid

被引:0
|
作者
Madad KHAN
Saima ANIS
机构
[1] DepartmentofMathematics,COMSATSInstituteofInformationTechnology
关键词
D O I
暂无
中图分类号
O152 [群论];
学科分类号
070104 ;
摘要
In this paper, we have decomposed an AG-groupoid. Let S be an AG-groupoid with left identity and a relation γ be defined on S as: aγb if and only if there exist positive integers m and n such that bm ∈ ( Sa)S and a n ∈ ( Sb)S for all a and b in S. We have proved that S/γ is a maximal separative semilattice homomorphic image of S. Every AG-groupoid S is uniquely expressible as a semilattice Y of archimedean AG-groupoids Sα (α∈ Y ). The semilattice Y is isomorphic to S/γ and the S α (α∈ Y ) are the equivalence classes of S mod γ.
引用
收藏
页码:1461 / 1468
页数:8
相关论文
共 50 条