Infinite Dimensional Reaction-diffusion Processes

被引:10
|
作者
陈木法
机构
[1] Department of Mathematics
[2] Beijing Normal
关键词
D O I
暂无
中图分类号
学科分类号
摘要
<正> §1.IntroductionThe background of the reaction-diffusion processes can be found in Haken andYan and Lee.For finite dimensional case,the reaction-diffusion processes havebeen studied by Yan and Chen.In particular,it has been proved there that theprocess corresponding to Schlgl model is always ergodic,hence the invariantmeasure is unique,so there is no phase transition.Howeyer,many physists think
引用
收藏
页码:261 / 273
页数:13
相关论文
共 50 条
  • [21] EVOLUTION OF REACTION-DIFFUSION PATTERNS IN INFINITE AND BOUNDED DOMAINS
    HASSAN, SA
    KUPERMAN, MN
    WIO, HS
    ZANETTE, DH
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1994, 206 (3-4) : 380 - 400
  • [22] Reaction rate in reversible A⇆B reaction-diffusion processes
    Sinder, M.
    Sokolovsky, V.
    Pelleg, J.
    APPLIED PHYSICS LETTERS, 2010, 96 (07)
  • [23] EXISTENCE AND UNIQUENESS OF SOLUTION TO THE MARTINGALE PROBLEM FOR INFINITE DIMENSIONAL REACTION-DIFFUSION PARTICLE-SYSTEMS
    HAN, D
    CHINESE SCIENCE BULLETIN, 1990, 35 (06): : 518 - 519
  • [24] Infinite-dimensional exponential attractors for nonlinear reaction-diffusion systems in unbounded domains and their approximation
    Efendiev, M
    Miranville, A
    Zelik, S
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 460 (2044): : 1107 - 1129
  • [25] NONSTATIONARY HOMOCLINIC SOLUTIONS FOR INFINITE-DIMENSIONAL FRACTIONAL REACTION-DIFFUSION SYSTEM WITH TWO TYPES OF
    Chen, Peng
    Wu, Yan
    Tang, Xianhua
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (11): : 5447 - 5480
  • [26] Multicomponent reaction-diffusion processes on complex networks
    Weber, Sebastian
    Porto, Markus
    PHYSICAL REVIEW E, 2006, 74 (04):
  • [27] STOCHASTIC FLOWS, REACTION-DIFFUSION PROCESSES, AND MORPHOGENESIS
    KOZAK, JJ
    HATLEE, MD
    MUSHO, MK
    POLITOWICZ, PA
    WALSH, CA
    JOURNAL OF STATISTICAL PHYSICS, 1983, 30 (02) : 263 - 271
  • [28] MULTISTATE CELLULAR AUTOMATON FOR REACTION-DIFFUSION PROCESSES
    ZANETTE, DH
    PHYSICAL REVIEW A, 1992, 46 (12): : 7573 - 7577
  • [29] Encoding physics to learn reaction-diffusion processes
    Rao, Chengping
    Ren, Pu
    Wang, Qi
    Buyukozturk, Oral
    Sun, Hao
    Liu, Yang
    NATURE MACHINE INTELLIGENCE, 2023, 5 (7) : 765 - 779
  • [30] Multiresolution stochastic simulations of reaction-diffusion processes
    Bayati, Basil
    Chatelain, Philippe
    Koumoutsakos, Petros
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (39) : 5963 - 5966