Global Well-posedness of Compressible Bipolar Navier-Stokes-Poisson Equations

被引:3
|
作者
Yi Quan LIN [1 ]
Cheng Chun HAO [2 ]
Hai Liang LI [3 ]
机构
[1] School of Mathematical Sciences, Peking University
[2] Institute of Mathematics, Academy of Mathematics and Systems Science, Hua Loo-Keng Key Laboratory of Mathematics, Chinese Academy of Sciences
[3] Department of Mathematics, Capital Normal
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider the initial value problem for multi-dimensional bipolar compressible Navier-Stokes-Poisson equations, and show the global existence and uniqueness of the strong solution in hybrid Besov spaces with the initial data close to an equilibrium state.
引用
收藏
页码:925 / 940
页数:16
相关论文
共 50 条
  • [41] Global Well-Posedness and Large Time Asymptotic Behavior of Classical Solutions to the Compressible Navier–Stokes Equations with Vacuum
    Jing Li
    Zhouping Xin
    Annals of PDE, 2019, 5
  • [42] Global well-posedness of strong solutions to the two-dimensional barotropic compressible Navier–Stokes equations with vacuum
    Li Fang
    Zhenhua Guo
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [43] WELL-POSEDNESS OF THE HYDROSTATIC NAVIER-STOKES EQUATIONS
    Gerard-Varet, David
    Masmoudi, Nader
    Vicol, Vlad
    ANALYSIS & PDE, 2020, 13 (05): : 1417 - 1455
  • [44] Well-posedness of the generalized Navier–Stokes equations with damping
    Liu, Hui
    Lin, Lin
    Sun, Chengfeng
    Applied Mathematics Letters, 2021, 121
  • [45] GLOBAL WELL-POSEDNESS OF 2D COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH LARGE DATA AND VACUUM
    Jiu, Quansen
    Wang, Yi
    Xin, Zhouping
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2014, 8 : 701 - 708
  • [46] Global well-posedness and time-decay estimates for compressible Navier-Stokes equations with reaction diffusion
    Wang, Wenjun
    Wen, Huanyao
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (06) : 1199 - 1228
  • [47] Blow-Up for the Compressible Isentropic Navier-Stokes-Poisson Equations
    Dong, Jianwei
    Zhu, Junhui
    Wang, Yanping
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2020, 70 (01) : 9 - 19
  • [48] Well-posedness of the Navier-Stokes-Maxwell equations
    Germain, Pierre
    Ibrahim, Slim
    Masmoudi, Nader
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2014, 144 (01) : 71 - 86
  • [49] Existence and stability of stationary solutions to the compressible Navier-Stokes-Poisson equations
    Cai, Hong
    Tan, Zhong
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 32 : 260 - 293
  • [50] Blow-Up for the Compressible Isentropic Navier-Stokes-Poisson Equations
    Jianwei Dong
    Junhui Zhu
    Yanping Wang
    Czechoslovak Mathematical Journal, 2020, 70 : 9 - 19