Gradient Estimates and Harnack Inequalities for Positive Solutions of ■ on Self-shrinkers

被引:0
|
作者
Ye Cheng ZHU [1 ,2 ]
Qing CHEN [2 ]
机构
[1] Department of Applied Mathematics, Anhui University of Technology
[2] Department of Mathematics, University of Science and Technology of
关键词
D O I
暂无
中图分类号
O178 [不等式及其他];
学科分类号
摘要
In this paper, we investigate the positive solutions of ■ on self-shrinkers, then get some gradient estimates and Harnack inequalities for the positive solutions.
引用
收藏
页码:1217 / 1226
页数:10
相关论文
共 50 条
  • [41] Pinching Theorems for Self-Shrinkers of Higher Codimension
    Cao, Shunjuan
    Xu, Hongwei
    Zhao, Entao
    RESULTS IN MATHEMATICS, 2024, 79 (08)
  • [42] The Rigidity Theorem for Complete Lagrangian Self-Shrinkers
    Li, Zhi
    Wang, Ruixin
    Wei, Guoxin
    JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (02)
  • [43] ON THE ENTROPY OF CLOSED HYPERSURFACES AND SINGULAR SELF-SHRINKERS
    Zhu, Jonathan J.
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2020, 114 (03) : 551 - 593
  • [44] Hopf-type theorem for self-shrinkers
    Alencar, Hilario
    Silva Neto, Gregorio
    Zhou, Detang
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (782): : 247 - 279
  • [45] Closed Embedded Self-shrinkers of Mean Curvature Flow
    Riedler, Oskar
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (06)
  • [46] Some results on space-like self-shrinkers
    Hua Qiao Liu
    Yuan Long Xin
    Acta Mathematica Sinica, English Series, 2016, 32 : 69 - 82
  • [47] Some Results on Space-Like Self-Shrinkers
    Hua Qiao LIU
    Yuan Long XIN
    Acta Mathematica Sinica,English Series, 2016, 32 (01) : 69 - 82
  • [48] SELF-SHRINKERS WITH SECOND FUNDAMENTAL FORM OF CONSTANT LENGTH
    Guang, Qiang
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 96 (02) : 326 - 332
  • [49] Linear Weingarten self-shrinkers in R3
    Yang, Dan
    Fu, Yu
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2025, 119 (02)
  • [50] Classification and rigidity of self-shrinkers in the mean curvature flow
    Li, Haizhong
    Wei, Yong
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2014, 66 (03) : 709 - 734