An Example of Embedded Singular Continuous Spectrum for Discrete Schr?dinger Operators

被引:0
|
作者
Zheng Qi FU
Xiong LI
机构
[1] LaboratoryofMathematicsandComplexSystems(MinistryofEducation),SchoolofMathematicalSciences,BeijingNormalUniversity
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We present an example of a potential such that the corresponding discrete Schr?dinger operator has singular continuous spectrum embedded in the absolutely continuous spectrum.
引用
收藏
页码:1837 / 1849
页数:13
相关论文
共 50 条
  • [21] Geometric relative Hardy inequalities and the discrete spectrum of Schrödinger operators on manifolds
    Kazuo Akutagawa
    Hironori Kumura
    Calculus of Variations and Partial Differential Equations, 2013, 48 : 67 - 88
  • [22] On the Singular Spectrum for Adiabatic Quasi-Periodic Schrödinger Operators on the Real Line
    Alexander Fedotov
    Frédéric Klopp
    Annales Henri Poincaré, 2004, 5 : 929 - 978
  • [23] Absolutely Continuous Spectrum of Schrödinger Operators with Slowly Decaying and Oscillating Potentials
    A. Laptev
    S. Naboko
    O. Safronov
    Communications in Mathematical Physics, 2005, 253 : 611 - 631
  • [24] Stability of the Absolutely Continuous Spectrum of Random Schrödinger Operators on Tree Graphs
    Michael Aizenman
    Robert Sims
    Simone Warzel
    Probability Theory and Related Fields, 2006, 136 : 363 - 394
  • [25] Deficiency Indices for Singular Magnetic Schrödinger Operators
    Correggi, Michele
    Fermi, Davide
    MILAN JOURNAL OF MATHEMATICS, 2024, 92 (01) : 25 - 39
  • [26] On the Essential Spectrum of Schrödinger Operators on Trees
    Jonathan Breuer
    Sergey Denisov
    Latif Eliaz
    Mathematical Physics, Analysis and Geometry, 2018, 21
  • [27] Nonlinear Schrödinger operators with zero in the spectrum
    Martin Schechter
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 2125 - 2141
  • [28] Deficiency Indices for Singular Magnetic Schrödinger Operators
    Michele Correggi
    Davide Fermi
    Milan Journal of Mathematics, 2024, 92 : 25 - 39
  • [29] Commutators of Singular Integral Operators Related to Magnetic Schrdinger Operators
    Wanqing Ma
    Yu Liu
    Analysis in Theory and Applications, 2018, 34 (01) : 45 - 56
  • [30] Reflectionless Discrete Schrödinger Operators are Spectrally Atypical
    Tom VandenBoom
    Communications in Mathematical Physics, 2018, 359 : 499 - 514